Nav: Home

3-D models reveal hidden details of zebrafish behavior

May 16, 2017

BROOKLYN, New York --Zebrafish have become increasingly popular model animals in preclinical and neurobehavioral research due to their genetic similarity to humans and rapid rate of reproduction. Studies of zebrafish behavior have shed light on social and biological phenomena ranging from the dynamics of collective animal behavior, such as shoaling and schooling, to anxiety, fear, and leadership. Borrowing from decades of work on mice and rats, most observations of zebrafish are conducted using a two-dimensional approach, despite the fact that zebrafish swim in three-dimensional (3D) space.

In a new paper published in Scientific Reports, a research team led by Maurizio Porfiri, professor of mechanical and aerospace engineering at the New York University Tandon School of Engineering, compared 2D and 3D observational data in a series of behavioral experiments. Their results highlighted potential compromises in data integrity in 2D-scored behaviors versus 3D, with the former tending to under-estimate locomotion in zebrafish. Because interpretation of zebrafish behavior is entirely dependent on assessment of swimming patterns and preference in response to various stimuli, such reporting errors can influence experimental outcomes.

Experiments also confirmed that 3D approaches to analyze zebrafish behavior require less than half of the number of zebrafish used in 2D approaches, with no compromise in validity. These findings may lead to a reduction in the number experimental animals.

The paper was co-authored by Simone Macri? of the Istituto Superiore di Sanita? in Rome, Italy; Daniele Neri, Tommaso Ruberto, and Violet Mwaffo, all at NYU Tandon in Porfiri's group; and Sachit Butail, an assistant professor of mechanical engineering at Northern Illinois University.

"Zebrafish are inherently social species who demonstrate a rich repertoire of swimming behaviors in response to various stimuli," said Porfiri. "Two-dimensional scoring intrinsically misses a major dimension of swimming behaviors, leading to undesired false positives and false negatives. This is the first study to systematically quantify the degree to which data integrity may be compromised by this approach."

Using data from previous zebrafish studies based on a 3D tracking software developed by Porfiri's group, the research team compared zebrafish behavior in response to stimuli including a live conspecific and live predator, 3D-printed models of a conspecific and a predator, and a computer animated image of a predator. These experimental paradigms are commonly used to study anxiety, memory, fear, and general locomotion in zebrafish.

Their results confirmed that 2D tracking significantly underestimates zebrafish swimming behavior with respect to average speed, average peak speed, wall following, and other parameters. Additionally, 2D tracking consistently overestimated spatial preference for stimuli, an important parameter for understanding fear, anxiety, and other social behaviors. For example, zebrafish have an innate aversion towards threatening stimuli; such aversion, clearly identifiable through the 3D approach, can be overlooked when data are scored in 2D.

The researchers acknowledge that material costs and the burdens of analyzing 3D data increased computational loads, which likely prohibit the replacement of 2D approaches, but emphasize that 3D tracking systems may be a valuable complement to zebrafish behavior analysis, particularly as a means to gain rich data sets with fewer numbers of experimental subjects.
-end-
Three-Dimensional Scoring of Zebrafish Behavior Unveils Biological Phenomena Hidden by Two-Dimensional Analysis is available at http://www.nature.com/articles/s41598-017-01990-z. The National Science Foundation and Mitsui USA Foundation supported the work.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, the country's largest private research university, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

NYU Tandon School of Engineering

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.