Nav: Home

Tailor-made synthesis of cyclic chemicals by means of enzymes

May 16, 2018

Penicillin-based antibiotics contain a five-membered hydrocarbon cycle, additionally incorporating a sulfur and a nitrogen atom. Nadine Zumbrägel, doctoral student at the Chair of Organic Chemistry I at Bielefeld University, has succeeded in selectively synthesizing this important substructure with different residues on this cycle using a biotechnological method. The targeted design of such structures now enables the preparation of substance libraries of such so-called heterocycles, which can in future be used by the pharmaceutical industry to find new active substances. Besides the Bielefeld chemists, two scientists from the Ruhr-University Bochum were also involved in the studies. The researchers present their findings today (16 May 2018) in the renowned journal Nature Communications with Zumbrägel as first author and Professor Dr. Harald Gröger, head of the Chair of Organic Chemistry I, as corresponding author.

Recently, in the renowned specialist journal "Chemical & Engineering News", antibiotics were described as one of the nine ways chemistry has changed the world. Of particular importance are penicillins, which in turn contain a five-membered hydrocarbon cycle with a sulfur and a nitrogen atom additionally incorporated therein. The selective production of this important substructure, flexibly equipped with different substituents on the cycle, in turn represents a substance library for finding new drug structures. In principle, access to these cyclic structures is conceivable from easily accessible substrates, the so-called 3-thiazolines. The cyclic structure is already pre-formed and "only" one double bond has to be converted into a single bond by means of a reduction.

Although these 3-thiazolines have been known for decades and were first reported in the 1950s, this conversion proved to be synthetically difficult. This is remarkable since a large number of chemical methods are generally available for the reaction type of reduction and have already been successfully used for numerous synthesis purposes. There are several reasons why such "classical chemical" processes proved ineffective in the production of this compound class of five-membered cycles with incorporated sulfur and nitrogen atoms: for instance, strongly reducing processes lead to undesired ring-opening and in other reduction processes with metal catalysts, the sulfur contained in the cycle acts like a catalyst poison. The required selectivity also proved to be an insurmountable hurdle: during reduction, chiral compounds can form, which behave like image and mirror image. For active substances it is important that only one of these forms, so-called enantiomers, is present. Previous methods were able to preserve the ring in the best case, but resulted in only extremely low selectivities.

In her doctoral thesis funded by the German Federal Ministry of Education and Research (BMBF) as part of the "Biotechnology 2020+, Next Generation of Biotechnological Processes" funding programme, Nadine Zumbrägel has now succeeded for the first time in reducing 3-thiazolines without side reactions to the desired target compounds in a highly selective manner, forming only one enantiomer. For this purpose, she used representatives of the enzyme class of the so-called imine reductases as biocatalysts. Zumbrägel explains: "The pharmaceutical industry is increasingly demanding highly enantioselective synthesis methods. One possibility is the use of enzymes as suitable catalysts, which are reaction accelerating molecules in chemical processes."

The researchers also succeeded in extending the reduction method to other sulphur-containing heterocycles, thus developing a platform technology. The applicability of this reduction method has also already been demonstrated by the scientists on an enlarged laboratory scale. "This successful combination of biotechnology and heterocyclic chemistry is a further proof for the potential of enzymes as natural catalysts for use in preparing chemicals," says Gröger, who has been conducting research on biocatalytic processes for the synthesis of industrial chemicals with his research group at Bielefeld University since 2011. In cooperation with Professor Dr. Stefan Huber from the Ruhr-University Bochum, who carried out quantum mechanical calculations, it was also possible to rationally reproduce the experimental observations with the aid of computer chemistry. Dr. Christian Merten, likewise from the Ruhr-University Bochum, also combined quantum mechanical calculations with VCD (Vibrational Circular Dichroism) measurements, which enabled the determination of the stereochemical properties of the target compound.
-end-
Original publication: Nadine Zumbrägel, Christian Merten, Stefan M. Huber, Harald Gröger, Enantioselective reduction of sulfur-containing cyclic imines through biocatalysis, Nature Communications, DOI: 10.1038/s41467-018-03841-5, published on the 16th of May 2018.

Further information is available online at:

Website Organic Chemistry I, link: http://www.uni-bielefeld.de/chemie/arbeitsbereiche/oc1/HG/

Press release (8/1/2018) "Enzyme für umweltfreundliche Chemie nutzen" (in German) ["Using en-zymes for green chemistry"], link: https://ekvv.uni-bielefeld.de/blog/uniaktuell/entry/enzyme_f%C3%BCr_umweltfreundliche_chemie_nutzen

Contact:
Professor Dr. Harald Gröger, Bielefeld University
Faculty of Chemistry, Organic Chemistry I
Telephone: 0049 521 106-2057, -6920 (secretary's office)
Email: harald.groeger@uni-bielefeld.de

Bielefeld University

Related Sulfur Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Science fiction horror wriggles into reality with discovery of giant sulfur-powered shipworm
Our world seems to grow smaller by the day as biodiversity rapidly dwindles, but an international team of researchers discovered a never before studied giant, black, mud dwelling, worm-like animal.
Researchers develop a new way to study key biological processes
A team of scientists at The University of East Anglia (UEA) has developed a novel way to obtain previously inaccessible insight into the functions of a group of essential proteins.
New gel-like coating beefs up the performance of lithium-sulfur batteries
Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.
Volcano breath: Measuring sulfur dioxide from space
In a new study published in Scientific Reports this week, a team led by researchers from Michigan Technological University created the first, truly global inventory for volcanic sulfur dioxide emissions, using data from the Dutch-Finnish Ozone Monitoring Instrument on NASA's Earth Observing System Aura satellite launched in 2004.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Getting rid of the last bits of sulfur in fuel
A new technique could help scrub the last traces of sulfur from diesel and gas.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.
The hidden side of sulfur
The active element in the molecule that initiates transformations in synthetic organic chemistry, known as the catalyst, is often hydrogen.
New findings boost promise of molybdenum sulfide for hydrogen catalysis
Researchers from North Carolina State University, Duke University and Brookhaven National Laboratory have found that molybdenum sulfide (MoS2) holds more promise than previously thought as a catalyst for producing hydrogen to use as a clean energy source.

Related Sulfur Reading:

Saving My Sanity: Sulfur Springs Book 3

Sulfur Springs: A Novel (Cork O'Connor Mystery Series)
by William Kent Krueger (Author)

MSM: On Our Way Back to Health with Sulfur
by Beth M. Ley (Author)

Sulfur Concrete for the Construction Industry: A Sustainable Development Approach
by Abdel-Mohsen Mohamed (Author), Maisa El Gamal (Author)

MSM: Azufre Para recuperar la Salud (Spanish Edition)
by Beth M. Ley (Author)

Sulfur Assimilation and Abiotic Stress in Plants
by Nafees A. Khan (Editor), Sarvajeet Singh (Editor), Shahid Umar (Editor)

A Sulfur Anthology
by Clayton Eshleman (Editor)

Why Hell Stinks of Sulfur: Mythology and Geology of the Underworld
by Salomon Kroonenberg (Author), Andy Brown (Translator)

Protecting My Commitment: Sulfur Springs Book 1

Sodium Sulfur Battery
by J. Sudworth (Author), A.R. Tiley (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...