Nav: Home

A quantum entanglement between two physically separated ultra-cold atomic clouds

May 16, 2018

The prestigious journal Science has echoed a novel experiment in the field of quantum physics in which several members of the Quantum Information Theory and Quantum Metrology research group of the Department of Theoretical Physics and History of Science at the UPV/EHU's Faculty of Science and Technology participated, led by Géza Tóth, Ikerbasque Research Professor, and carried out at the University of Hannover. In the experiment, they achieved quantum entanglement between two ultra-cold atomic clouds, known as Bose-Einstein condensates, in which the two ensembles of atoms were spatially separated from each other.

Quantum entanglement was discovered by Schrödinger and later studied by Einstein and other scientists in the last century. It is a quantum phenomenon that has no counterparts in classical physics. The groups of entangled particles lose their individuality and behave as a single entity. Any change in one of the particles leads to an immediate response in the other, even if they are spatially separated. "Quantum entanglement is essential in applications such as quantum computing, since it enables certain tasks to be performed much faster than in classical computing," explained the leader of the Quantum Information Theory and Quantum Metrology group Géza Toth.

Unlike the way in which quantum entanglement between clouds of particles has been created up to now, and which involves using incoherent and thermal clouds of particles, in this experiment they used a cloud of atoms in the Bose-Einstein condensate state. As Tóth explained, "Bose-Einstein condensates are achieved by cooling down the atoms to very low temperatures, close to absolute zero. At that temperature, all the atoms are in a highly coherent quantum state; in a sense, they all occupy the same position in space. In that state quantum entanglement exists between the atoms of the ensemble." Subsequently, the ensemble was split into two atomic clouds. "We separated the two clouds from each other by a distance, and we were able to demonstrate that the two parts remained entangled with each other," he continued.

The demonstration that entanglement can be created between two ensembles in the Bose-Einstein condensate state could lead to an improvement in many fields in which quantum technology is used, such as quantum computing, quantum simulation and quantum metrology, since these require the creation and control of large ensembles of entangled particles. "The advantage of cold atoms is that it is possible to create highly entangled states containing quantities of particles outnumbering any other physical systems by several orders of magnitude, which could provide a basis for large scale quantum computing," said the researcher.
Additional information

The experiment was carried out at the University of Hannover by Carsten Klempt and the members of his group Karsten Lange, Jan Peise, Bernd Lücke and Ilka Kruse. The group of Géza Tóth of the Department of Theoretical Physics and History of Science at the UPV/EHU, included Giuseppe Vitagliano, Iagoba Apellaniz and Matthias Kleinmann; they developed a criterion that verified the presence of quantum entanglement.

Bibliographic reference

Karsten Lange, Jan Peise, Bernd Lücke, Ilka Kruse, Giuseppe Vitagliano, Iagoba Apellaniz, Matthias Kleinmann, Geza Toth, Carsten Klempt.
Entanglement between two spatially separated atomic modes
Science (2018)
DOI: 10.1126/science.aao2035

University of the Basque Country

Related Quantum Computing Articles:

New method could enable more stable and scalable quantum computing, Penn physicists report
Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing.
Stanford team brings quantum computing closer to reality with new materials
Quantum computing could outsmart current computing for complex problem solving, but only if scientists figure out how to make it practical.
Computing -- quantum deep
In a first for deep learning, an Oak Ridge National Laboratory-led team is bringing together quantum, high-performance and neuromorphic computing architectures to address complex issues that, if resolved, could clear the way for more flexible, efficient technologies in intelligent computing.
Legacy of brilliant young scientist is a major leap in quantum computing
Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.
WSU mathematician breaks down how to defend against quantum computing attacks
WSU mathematician Nathan Hamlin is the author of a new paper that explains how a code he wrote for a doctoral thesis, the Generalized Knapsack Code, could thwart hackers armed with next generation quantum computers.
Protecting quantum computing networks against hacking threats
As we saw during the 2016 US election, protecting traditional computer systems, which use zeros and ones, from hackers is not a perfect science.
Electron-photon small-talk could have big impact on quantum computing
In a step that brings silicon-based quantum computers closer to reality, researchers at Princeton University have built a device in which a single electron can pass its quantum information to a particle of light.
Bridging the advances in AI and quantum computing for drug discovery and longevity research
Insilico Medicine Inc. and YMK Photonics Inc. announced a research collaboration and business cooperation to develop photonics quantum computing and accelerated deep learning techniques for drug discovery, biomarker development and aging research.
New technique for creating NV-doped nanodiamonds may be boost for quantum computing
Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies.
Exploring defects in nanoscale devices for possible quantum computing applications
Researchers at Tokyo Institute of Technology in collaboration with the University of Cambridge have studied the interaction between microwave fields and electronic defect states inside the oxide layer of field-effect transistors at cryogenic temperatures.

Related Quantum Computing Reading:

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation)
by Eleanor G. Rieffel (Author), Wolfgang H. Polak (Author), William Gropp (Editor), Ewing Lusk (Editor)

Quantum Computation and Quantum Information: 10th Anniversary Edition
by Michael A. Nielsen (Author), Isaac L. Chuang (Author)

Quantum Computing since Democritus
by Scott Aaronson (Author)

Quantum Mechanics: The Theoretical Minimum
by Leonard Susskind (Author), Art Friedman (Author)

Quantum Computing for Computer Scientists
by Noson S. Yanofsky (Author), Mirco A. Mannucci (Author)

Quantum Computer Science: An Introduction
by N. David Mermin (Author)

An Introduction to Quantum Computing
by Phillip Kaye (Author), Raymond Laflamme (Author), Michele Mosca (Author)

An Overview of Quantum Computing: " The State of The Art In Computers "
by Edited by Paul F. Kisak (Author)

Quantum Computing for Babies (Baby University)
by Chris Ferrie (Author), whurley (Author)

Quantum Computing From The Ground Up
by Riley Tipton Perry (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...