Nav: Home

An electronic rescue dog

May 16, 2018

Trained rescue dogs are still the best disaster workers - their sensitive noses help them to track down people buried by earthquakes or avalanches. Like all living creatures, however, dogs need to take breaks every now and again. They are also often not immediately available in disaster areas, and dog teams have to travel from further afield.

A new measuring device from researchers at ETH Zurich led by Sotiris Pratsinis, Professor of Process Engineering, however, is always ready for use. The scientists had previously developed small and extremely sensitive gas sensors for acetone, ammonia, and isoprene - all metabolic products that we emit in low concentrations via our breath or skin. The researchers have now combined these sensors in a device with two commercial sensors for CO2 and moisture.

Chemical "fingerprint"

As shown by laboratory tests in collaboration with Austrian and Cypriot scientists, this sensor combination can be quite useful when searching for entrapped people. The researchers used a test chamber at the University of Innsbruck's Institute for Breath Research in Dornbirn as an entrapment simulator. Volunteers each remained in this chamber for two hours.

"The combination of sensors for various chemical compounds is important, because the individual substances could come from sources other than humans. CO2, for example, could come from either a buried person or a fire source," explains Andreas Güntner, a postdoc in Pratsinis' group and lead author of the study, published in the journal Analytical Chemistry [http://dx.doi.org/10.1021/acs.analchem.8b00237]. The combination of sensors provides the scientists with reliable indicators of the presence of people.

Suitable for inaccessible areas

The researchers also showed that there are differences between the compounds emitted via our breath and skin. "Acetone and isoprene are typical substances that we mostly breathe out. Ammonia, however, is usually emitted through the skin," explains ETH professor Pratsinis. In the experiments in the entrapment simulator, the participants wore a breathing mask. In the first part of the experiment, the exhaled air was channelled directly out of the chamber; in the second part, it remained inside. This allowed the scientists to create separate breath and skin emission profiles.

The ETH scientists' gas sensors are the size of a small computer chip. "They are about as sensitive as most ion mobility spectrometers, which cost thousands of Swiss francs and are the size of a suitcase," says Pratsinis. "Our easy-to-handle sensor combination is by far the smallest and cheapest device that is sufficiently sensitive to detect entrapped people. In a next step, we would like to test it during real conditions, to see whether it is suited for use in searches after earthquakes or avalanches."

While electronic devices are already in use during searches after earthquakes, these work with microphones and cameras. These only help to locate entrapped people who are capable of making themselves heard or are visible beneath ruins. The ETH scientists' idea is to complement these resources with the chemical sensors. They are currently looking for industry partners or investors to support the construction of a prototype. Drones and robots could also be equipped with the gas sensors, allowing difficult-to-reach or inaccessible areas to also be searched. Further potential applications could include detecting stowaways and exposing human trafficking.
-end-
Reference

Güntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE: Sniffing Entrapped Humans with Sensor Arrays. Analytical Chemistry, doi: 10.1021/acs.analchem.8b00237 [http://dx.doi.org/10.1021/acs.analchem.8b00237]

ETH Zurich

Related Earthquakes Articles:

Distant earthquakes can cause underwater landslides
New research finds large earthquakes can trigger underwater landslides thousands of miles away, weeks or months after the quake occurs.
New model could help predict major earthquakes
Nagoya University-led researchers characterized several earthquakes that struck South America's west coast over the last 100 years by using seismographic data, tsunami recordings, and models of the rapid plate movements associated with these natural disasters.
Forecasting large earthquakes along the Wasatch Front, Utah
There is a 43 percent probability that the Wasatch Front region in Utah will experience at least one magnitude 6.75 or greater earthquake, and a 57 percent probability of at least one magnitude 6.0 earthquake, in the next 50 years, say researchers speaking at the 2017 Seismological Society of America's (SSA) Annual Meeting.
Anticipating hazards from fracking-induced earthquakes in Canada and US
As hydraulic fracturing operations expand in Canada and in some parts of the United States, researchers at the 2017 Seismological Society of America's (SSA) Annual Meeting are taking a closer look at ways to minimize hazards from the earthquakes triggered by those operations.
Oklahoma is laboratory for research on human-induced earthquakes
Earthquakes such as the February 2016 magnitude 5.1 Fairview quake, November 2016's 5.0 Cushing quake, and the September 2016 5.8 Pawnee quake -- the state's largest in historic times -- have made Oklahoma a laboratory for studying human-induced seismicity, according to researchers gathering at the 2017 Seismological Society of America's (SSA) Annual meeting.
Prediction of large earthquakes probability improved
As part of the 'Research in Collaborative Mathematics' project run by the Obra Social 'la Caixa', researchers of the Mathematics Research Centre (CRM) and the UAB have developed a mathematical law to explain the size distribution of earthquakes, even in the cases of large-scale earthquakes such as those which occurred in Sumatra (2004) and in Japan (2011).
Manmade earthquakes in Oklahoma on the decline
Stanford scientists predict that over the next few years, the rate of induced earthquake in Oklahoma will decrease significantly, but the possibility for damaging earthquakes to occur will remain high.
Crowdsourced data can help researchers study earthquakes
A new study on how people feel the effects of earthquakes illustrates the value that members of the public can add to the scientific research process.
Humans have been causing earthquakes in Texas since the 1920s
Earthquakes triggered by human activity have been happening in Texas since at least 1925, and they have been widespread throughout the state ever since, according to a new historical review of the evidence published online May 18 in Seismological Research Letters.
Bubble volcano: Shaking, popping by earthquakes may cause eruptions
A new study on the connection between earthquakes and volcanoes took its inspiration from old engineering basics.

Related Earthquakes Reading:

Earthquakes (Let's-Read-and-Find-Out Science 2)
by Dr. Franklyn M. Branley (Author), Megan Lloyd (Illustrator)

Earthquakes
by Seymour Simon (Author)

Earthquakes (True Books: Earth Science (Paperback))
by Ker Than (Author)

Quakeland: On the Road to America's Next Devastating Earthquake
by Kathryn Miles (Author)

The Great Quake: How the Biggest Earthquake in North America Changed Our Understanding of the Planet
by Henry Fountain (Author)

National Geographic Kids Everything Volcanoes and Earthquakes: Earthshaking photos, facts, and fun!
by Kathy Furgang (Author)

Earthquakes: 2006 Centennial Update
by Bruce Bolt (Author)

Earthquake! (Rise and Shine) (Natural Disasters)
by Marion Dane Bauer (Author), John Wallace (Illustrator)

Earthquakes! (TIME FOR KIDS Nonfiction Readers)
by Teacher Created Materials (Author)

Earthquakes: Science & Society (2nd Edition)
by David S. Brumbaugh (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...