Nav: Home

Stars formed only 250 million years after the Big Bang

May 16, 2018

Stars in a galaxy 13.28 billion light years away formed only 250 million years after the Big Bang, finds a team of international astronomers led by groups at UCL and Osaka Sangyo University in Japan.

The discovery shows that stars in the galaxy - called MACS1149-JD1 - formed at an unexpectedly early stage in the age of the Universe and the new observations break the team's own record for detecting the most distant known source of oxygen.

The team confirmed the distance of the galaxy through observations undertaken with the Atacama Large Millimetre/Submillimetre Array (ALMA) and the European Southern Observatory's Very Large Telescope (VLT); the distance corresponds to looking back to a time when the Universe was only 500 million years old, which is 3.5% of its present age.

Although the presence of galaxies at this epoch is not necessarily surprising, the detection of oxygen in MACS1149-JD1 indicates a more remarkable conclusion. Oxygen is only created in stars and then released into the gas clouds in galaxies when those stars die. The presence of oxygen in MACS1149-JD1 therefore indicates that a previous generation of stars had already formed and died at an even earlier time.

"This is an exciting discovery as this galaxy is seen at a time when the Universe was only 500 million years old and yet it already has a population of mature stars. We are therefore able to use this galaxy to probe into an earlier, completely uncharted, period of cosmic history!" explained Dr Nicolas Laporte, second author and a postdoctoral researcher at UCL who led the VLT observing campaign."

The study, published today in the journal Nature, was an international and collaborative effort. The Japanese team, led by Dr Takuya Hashimoto and Professor Akio Inoue of the Osaka Sangyo University, used ALMA to observe the distant galaxy called MACS1149-JD1. They detected a signal from ionised oxygen whose infrared light was stretched ten-fold to microwave wavelengths by the expansion of the Universe.

Dr Laporte independently confirmed the inferred distance of 13.28 billion light years by detecting emissions of hydrogen using the VLT [1]. These signals also stretched to near-infrared wavelengths, making MACS1149-JD1 the most distant known galaxy with a precise distance measurement [2].

ALMA has set the record for the most distant known source several times. In 2016, Professor Inoue and his colleagues detected oxygen emission at 13.1 billion light-years. Several months later, Dr Laporte used ALMA to detect oxygen at 13.2 billion light-years away. Both teams merged efforts to achieve this new record.

"ALMA is now clearly the most powerful instrument for securing distances to galaxies in the early Universe ahead of the expected launch of the James Webb Space Telescope," commented Professor Richard Ellis, a co-author also at UCL.

The team reconstructed the earlier history of MACS1149-JD1 using infrared data taken with the NASA/ESA Hubble Space Telescope and NASA Spitzer Space Telescope. The observed brightness of the galaxy is well explained by a model where the onset of star formation corresponds to a time only 250 million years after the Universe began.

The maturity of the stars seen in MACS1149-JD1 raises the question of when the very first galaxies emerged from total darkness, an epoch astronomers call `cosmic dawn'.

By establishing the age of MACS1149-JD1, the team has effectively demonstrated the existence of early galaxies to times earlier than those where we can currently directly detect them.

Professor Ellis said: "Determining when cosmic dawn occurred is akin to the `Holy Grail' of cosmology and galaxy formation. With MACS1149-JD1, we have managed to probe history beyond the limits of when we can actually detect galaxies with current facilities. There is renewed optimism we are getting closer and closer to witnessing directly the birth of starlight. Since we are all made of processed stellar material, this is really finding our own origins."
-end-
[1] The measured redshift of galaxy MACS1149-JD1 is z=9.11. A calculation based on the latest cosmological parameters measured with Planck (H0=67.3 km/s/Mpc, Ωm=0.315, Λ=0.685: Planck 2013 Results) yields the distance of 13.28 billion light-years. Please refer to "Expressing the distance to remote objects" for details.

[2] The galaxy GN-z11 is thought to be located 13.4 billion light-years away based on observations with the Hubble Space Telescope (HST). But the precision of that distance measurement with is significantly lower than that of MACS1149-JD1 which is based on the use of two independent emission lines from atoms of hydrogen and oxygen.

University College London

Related Big Bang Articles:

Big brains or big guts: Choose one
A global study comparing 2,062 birds finds that, in highly variable environments, birds tend to have either larger or smaller brains relative to their body size.
Dark matter may be older than the big bang, study suggests
Dark matter, which researchers believe make up about 80% of the universe's mass, is one of the most elusive mysteries in modern physics.
Cincinnati researchers say early puberty in girls may be 'big bang theory' for migraine
Adolescent girls who reach puberty at an earlier age may also have a greater chance of developing migraine headaches, according to new research from investigators at the University of Cincinnati (UC) College of Medicine.
More bang for the climate buck: study identifies hotspots for adaptation funding
Using a combination of crop models and expertise from farmers and others -- and applying them to our current trajectory of high greenhouse gas emissions -- scientists built a tool to assess climate risk vulnerability to help pinpoint communities in need of support for adaptation and mitigation.
Big data takes aim at a big human problem
A James Cook University scientist is part of an international team that's used new 'big data' analysis to achieve a major advance in understanding neurological disorders such as Epilepsy, Alzheimer's and Parkinson's disease.
More Big Bang News and Big Bang Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...