Nav: Home

Scientists predict how 686 marine species' habitats may shift in response to warming seas

May 16, 2018

New predictions reveal how global warming may shift the geographic distribution of 686 marine species that inhabit North America's Atlantic and Pacific continental shelves, according to a study published May 16, 2018 in the open-access journal PLOS ONE by James Morley of Rutgers University, United States, and colleagues.

In response to warming seas, some marine species have already moved north or south to more favorable habitats, or to deeper, cooler waters. These changes pose challenges for resource management, such as conflicts over fisheries catch allocation between neighboring regions. Further shifts are expected, and predictions for individual species could help inform conservation and management efforts.

To that end, Morley and colleagues used data from long-term ecological surveys to develop statistical models of thermally preferable habitats for each of 686 North American continental shelf species. Then, for each species, they applied 16 different ocean circulation models under future scenarios of low or high greenhouse gas emissions to see how their preferred habitat might change during the 21st century.

The analysis predicted that climate change will alter the location and size of suitable habitats for many species, with all 16 circulation models projecting similar changes for two thirds of the 686 species. Habitats generally tended to shift north along the coastline in the model predictions, but these shifts varied depending on specific species' requirements, seafloor characteristics, and continental shelf width.

The models predicted that the total area of some species' suitable habitat may increase, but habitats for other species, such as East Coast sheepshead, may shrink significantly. Species off the U.S. and Canadian West Coast may move the farthest, with some, such as West Coast canary rockfish, shifting over 1000 kilometers under a high greenhouse gas emissions scenario.

The researchers note that their predictions do not account for finely detailed knowledge of every species, and the 16 circulation models disagreed strongly for about 20 percent of the species. However, unlike previous studies that focused on narrow geographic regions or took a low-resolution global approach, this study provided fine-grained analysis over a broad geographic range.

"We found a major effect of carbon emissions scenario on the magnitude of projected shifts in species habitat during the 21st century," says James Morley. "Under a high carbon emissions future we anticipate that many economically important species will expand into new regions and decline in areas of historic abundance."
In your coverage please use this URL to provide access to the freely available article in PLOS ONE:

Citation: Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves RJ, Pinsky ML (2018) Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13(5): e0196127.

Funding: Funding from The Pew Charitable Trusts (#28295), the Mid-Atlantic Fishery Management Council, NOAA's "FY14 Understanding Climate Impacts on Fish Stocks and Fisheries to Inform Sustainable Management" initiative (Competition OAR-CPO-2014-2004106 and the Office of Science and Technology), NSF #OCE-1426891 and #DEB-1616821. RLS is supported by an NSF OCE Postdoctoral Research Fellowship (#OCE-1521565). RJL acknowledges support provided by the Atlantic States Marine Fisheries Commission (#NA14NMF4740362). TLF acknowledges financial support from the Swiss National Science Foundation grant #PP00P2_170687. TLF, RLS, and MLP received support from the Nippon Foundation-UBC Nereus Program. This research was supported by the National Oceanic and Atmospheric Administration (NOAA) through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".