Nav: Home

Petry finds missing ingredient to spark the fireworks of life

May 16, 2018

Most people can name at least a few bones of the human body, but not many know about the cytoskeleton within our cells, let alone the "microtubules" that give it its shape. Now, a group of Princeton researchers has resolved a long-standing controversy by identifying exactly how the body creates these micron-sized filaments.

Using a novel imaging technique, Sabine Petry and the researchers in her lab were able to show that a protein called XMAP215, previously known only to help microtubules grow faster and longer, is necessary to creating the nucleus of each microtubule. Their work appears in the May issue of the journal Nature Cell Biology.

"Our study shows that microtubules in the cell are generated through cooperation between two molecules," said Akanksha Thawani, a fourth-year graduate student in Petry's lab who is the first author of the new paper. "XMAP215 functions together with a larger protein complex that forms ring shaped structures, gamma-tubulin ring complex (g-TuRC)."

"Microtubules are like the skeleton of the cell -- they give the cell its architecture," said Petry, an assistant professor of molecular biology and the senior author on the paper. "Beyond that, by positioning organelles, they can also serve as a highway for other components. Motor proteins can actually 'walk' along these microtubules. They really are fundamental to cell biology."

For 30 years, researchers in the field have known that the pillar-like microtubules are built of bricks called "tubulin" that grow from a tiny nucleus, and most agreed that g-tubulin was the only compound that could create that nucleus.

But there was a problem, said Petry. The few researchers who had succeeded in isolating g-TuRC found that when they put it in a test tube, it spectacularly underperformed at creating microtubule nuclei.

"Gamma-TuRC barely does anything," she said. "It nucleates a handful of microtubules, but it should make thousands."

Researchers have been puzzling over this for years, looking for some other factor that could activate or enhance g-TuRC. That search may now be over.

"The microtubule field has known [that g-tubulin] is not sufficient, and that other factors, that were not known, were also needed for full activity," said Eva Nogales, a professor of molecular and cell biology at the University of California-Berkeley who was not involved in this research. "The work by Petry and co-workers now shows that XMAP215, previously considered a microtubule 'polymerase' involved in microtubule elongation, acts synergistically with g-tubulin to promote efficient microtubule nucleation. The work provides an answer to this critical puzzle in our understanding of microtubule regulation in the cell."

Complicating their research was the difficulty in seeing the tiny structures at all, explained Thawani, a graduate student in in chemical and biological engineering. "The cell has tens of thousands of these polymers at any time, and our standard ways of observing these under a microscope do not allow for a good resolution," she said.

Petry used the classic metaphor of looking for a needle in a haystack, and she compared looking through a microscope with looking at the whole pile of hay. To solve the problem, she adapted a technique called total internal reflection fluorescence (TIRF) microscopy. Instead of illuminating the whole microscopic sample -- the whole haystack -- she instead imaged only a 100 nanometer-thick sliver. (For reference, a human hair is about 50,000 nanometers wide.)

"With TIRF microscopy, we don't illuminate anything outside that layer," she explained. "We don't see it. That's why we get a much higher signal-to-noise ratio: We don't see the other stuff that otherwise overlaps with the observation. So instead of seeing the haystack, which is still on top of it, we can see the needles against the glass. ... We can actually see the microtubules being born, we can see them grow, we can see what happens to them -- at the resolution of the needle."

A serendipitous find

Thawani hadn't set out to solve the mystery of why g-TuRC underperformed in test tubes. She had wanted to use TIRF microscopy to observe the growth of microtubules whose size she hoped to control with XMAP215, a protein known to encourage microtubule growth.

But instead of just growing longer microtubules, she saw that she was growing many more of them. "We added this protein, and it totally created a blast of microtubules," Thawani said. "That was one of the most mind-blowing bits in the whole process."

"The intention was just to study how these 'fireworks' form," said Petry. "So it was serendipity that Akanksha wanted to make them bigger, but then she saw -- 'Oh my gosh, there are more microtubules!' And the reason why she could see that more microtubules formed was that we have developed this imaging and extract capability. That's why no one else has seen it before."

Their team showed that the same phenomenon was seen in a test tube where g-TuRC generated microtubules together with XMAP215. This was chiefly the contribution of Rachel Kadzik, a postdoctoral researcher in Petry's lab and a co-first-author on the paper who purified the g-TuRC and, with Thawani, purified the XMAP215. G-TuRC is a 44-protein complex that has proven very difficult to purify and study in the 30 years since it was discovered.

Using the pure extractions of each protein, Petry's team was able to see that in a test tube, neither protein can nucleate microtubules without the other. "If we take XMAP215 out, not a single microtubule forms. If you take g-tubulin out, not a single microtubule forms," Petry said.

Their discovery required the combination of Thawani and Kadzik's experiments, viewed with Petry's TIRF microscopy imaging technique. "It was interesting," Petry said. "Rachel came from developmental biology, down to chemistry, and then Akanksha came from engineering up to biochemistry, so together, they were the super-team."
"XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex" by Akanksha Thawani, Rachel Kadzik and Sabine Petry appears in the May issue of Nature Cell Biology, doi:10.1038/s41556-018-0091-6. Their work was supported by the NIH New Innovator Award, the Pew Scholars Program in the Biomedical Sciences, the David and Lucile Packard Foundation, American Heart Association predoctoral fellowship 17PRE33660328 to Thawani, and NIH post-doctoral fellowship 1F32GM119195-01 to Kadzik.

Princeton University

Related Protein Articles:

Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
Put down the protein shake: Variety of protein better for health
University of Sydney researchers have examined whether there are any ongoing ramifications or potential side-effects from long-term high protein intake or from consuming certain types of amino acids.
Elucidating protein-protein interactions & designing small molecule inhibitors
To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI).
The protein with the starting gun
Whether dormant bacteria begin to reproduce is no accident. Rather, they are simply waiting for a clear signal from a single protein in the cell interior.
Protein moonlighting
A class of proteins involved in essential cell functions has an unexpected role, UCSB scientists discover.
Study says meat protein is unhealthy, but protein from nuts and seeds is heart smart
A study conducted by researchers in California and France has found that meat protein is associated with a sharp increased risk of heart disease while protein from nuts and seeds is beneficial for the human heart.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.