Miro2 is a Parkin receptor for selective removal of damaged mitochondria

May 16, 2019

Mitophagy plays a central role in the mitochondrial quality control system, and defective mitophagy is linked to a variety of human diseases. At present, how the damaged mitochondria are selectively recognized and removed to ensure the accuracy of mitophagic clearance remains unclear. Miro2, a mitochondrial subfamily of the Ras GTPases, was shown to sense both the depolarization and the Ca2+ release from mitochondria, acting as a Parkin receptor for accurate removal of damaged mitochondria, according to a new study published by Science Bulletin.

PINK and Parkin are causal genes for autosomal recessive early-onset Parkinsonism and key components of mitochondrial quality control system. Parkin, an E3 ligase, translocates from cytoplasm to damaged mitochondria to ubiquitinate numerous mitochondrial outer membrane proteins, which is believed to be the tag for mitophagic clearance. Before translocating to mitochondria, Parkin is able to be activated by phosphorylated ubiquitin in addition to its phosphorylation by PINK1. Since ubiquitin phosphorylation by PINK1 takes place in the vicinity of the mitochondrial outer membrane, Parkin likely translocates proximal to the mitochondrial outer membrane in order to be activated by PINK1. Therefore, there could be mitochondrial outer membrane protein(s) supplying a platform for Parkin recognition and recruitment.

The authors propose a model on how Miro2 functions as a receptor for Parkin recognition and translocation to damaged mitochondria. Under unperturbed conditions, PINK1 is cleaved by PARL at mitochondrial inner membrane. Upon mitochondrial membrane potential collapse, Miro2 is quickly phosphorylated at Ser325/Ser430 by the full-length PINK1 after PINK1 translocates to the mitochondrial outer membrane. Meanwhile, Ca2+ efflux from the mitochondria is sensed by the EF2 hand domain of Miro2. When Miro2 is phosphorylated by PINK1 and binds with Ca2+ released from mitochondria, Miro2 undergoes a realignment and demultimerization from tetramers to monomers on the mitochondrial outer membrane. Then the realigned Miro2 acts as a platform for Parkin recognition, translocation, and subsequent initiation of mitophagy. Thus, Miro2 is able to detect both membrane potential collapse and Ca2+ release from damaged mitochondria to ensure that only damaged mitochondria are recognized and targeted by Parkin for mitophagic clearance.

Dysfunctional mitochondria undergo multiple changes such as depolarization, Ca2+ efflux, ROS elevation etc. Therefore, "it is important for mitochondrial Parkin receptors to be able to detect multiple signals from damaged mitochondria to ensure the accuracy of mitophagy", said Tie-Shan Tang, head of the research team.

In agreement with the crucial role of Miro2 in selective removal of damaged mitochondria, Miro2 defective mice showed delayed reticulocyte maturation, lactic acidosis, and cardiac disorders. "Cardiac dilatation was obviously seen in Miro2-KO hearts at 11-month-old, and the accumulation of abnormal mitochondria in cardiac myocytes was also significant in Miro2-KO mice", said Jiu-Qiang Wang, the first author of the paper.

"We provide biochemical, molecular and cellular, and in vivo mouse model data demonstrating that Miro2 functions as a platform for Parkin translocation and damaged mitochondria clearance. These findings shed new light on understanding the pathological mechanisms of human diseases such as neurodegenerative diseases and cardiac disorders", the authors concluded.
See the article:

1. Jiu-Qiang Wang, Shu Zhu, Yihan Wang, Fengli Wang, Chaoqiang An, Dongfang Jiang, Lijie Gao, Yingfeng Tu, Xuefei Zhu, Yun Wang, Hongmei Liu, Juanjuan Gong, Zhongshuai Sun, Xi Wang, Leimei Liu, Keyan Yang, Caixia Guo, Tie-Shan Tang. Miro2 supplies a platform for Parkin translocation to damaged mitochondria. Sci Bull 2019, Doi:https://doi.org/10.1016/j.scib.2019.04.033

Science China Press

Related Mitochondria Articles from Brightsurf:

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.