Nav: Home

Evolution in the gut

May 16, 2019

They are a part of us: we all carry about ten times as many bacteria and archaea as our own cells. The bacterial ecosystem in our digestive tract, the so-called microbiome, is not only of great importance for our metabolism, but also for the immune system and even our behaviour. The same is true to animals, but the composition of the microbiome differs greatly between animal species. For the first time, a large-scale study was carried out to explain the development of the microbiome using faecal samples from free-living animals. 128 different species from very classes fish, amphibians, reptiles, birds and mammals were examined. The research groups involved were able to show how evolution and dietary habits interact and determine the composition of bacteria in the digestive tract. Many microorganisms in the intestine seem to have developed in sync with their host animals over millions of years. These results should also help in the characterisation of faecal pollution in water by allowing attribution to certain animal species in a much more precise way in the future.

Samples from all branches of the family tree

"So far there have been studies on the microbiome of humans, or special data for individual species such as rats. However, we wanted to select many animal species that were as representative as possible of the entire evolutionary tree of vertebrates - from birds to mammals to fish," says Prof. Andreas Farnleitner, Co-Leader of the Interuniversity Research Centre "Water and Health" at the TU Wien (ICC Water & Health, http://www.waterandhealth.at) and Professor of Microbiological Diagnostics in extension of the ICC Water & Health group at Karl Landsteiner Private University in Krems.

It was important to get samples from wild animals, as zoo animals can have a completely different microbiome than their wild counterparts. The Institute for Wildlife Science and Ecology of the University of Veterinary Medicine Vienna was the lead partner for the sample collection. The DNA of the microorganisms studied was then sequenced - partly at the TU Wien and partly at the Max Planck Institute for Developmental Biology in Tübingen.

"A total of more than 400 samples from 180 different species were analysed, resulting in 20 million gene sequences," said Dr. Georg Reischer (TU Vienna). The cooperation partners of the MPI in Tübingen contributed their know-how in bioinformatic data analysis and evolutionary biology to the study. This revealed striking relationships that can be explained by evolutionary history: The microbiome has developed over many millions of years in co-evolution with the host animals. Closely related species that are close to the evolutionary family tree also have similarities in the microbiome. "Nutrition also plays a role, but it is never the only decisive factor," explains Georg Reischer. "If a mammal eats the same food as a bird, it still does not have the same bacteria in its intestines."

The contamination bio-detector

The data collected in this study not only allows the interpretation of the co-evolution of host animals and the microorganisms in their digestive tract, it also facilitates the development of methods to assist in the provision of clean water. In recent years, a technology has been developed at the TU Wien that uses DNA tests to provide information on the source of fecal pollution in water. Thus it became possible to find out whether the contamination was caused by human wastewater or grazing animals. "Now we have a very extensive data set at our disposal that will make such tests possible in a much more comprehensive and accurate way," says Andreas Farnleitner.
-end-
Contact:

Prof. Andreas Farnleitner
TU Wien
T: +43-1-58801-166557
andreas.farnleitner@tuwien.ac.at
Karl Landsteiner Universität Krems
T: +43-2732-72090390
andreas.farnleitner@kl.ac.at

Dr. Georg Reischer
TU Wien
T: +43-1-58801-166556
georg.reischer@tuwien.ac.at

About Karl Landsteiner University of Health Sciences

Karl Landsteiner University of Health Sciences (KL) is a pioneer for innovation in medical and health sciences education and research, and a catalyst for groundbreaking work which will benefit society at large. Research at KL focuses on niche fields in bridge disciplines such as biomedical engineering, psychodynamics and psychology, as well as topics including water quality and related health issues. Study programmes include health sciences, human medicine, psychology, and psychotherapy and counselling and have full European recognition. A network of university hospitals in St Poelten, Krems, Tulln and Eggenburg provides students with quality-assured, research-led education; it enables them to do top-class clinical research that is recognised worldwide. Karl Landsteiner University received accreditation by the Agency for Quality Assurance and Accreditation Austria (AQ Austria) in 2013. http://www.kl.ac.at

About the Interuniversity Cooperation Centre for Water & Health

The Interuniversity Cooperation Centre for Water & Health (ICC Water & Health) is a scientific platform and expert partner on topics concerning water quality and its impact on human health. The ICC is dedicated to the development of innovative concepts for the assessment of water quality, new microbiology and molecular biology methods, the feasibility assessment of physical and chemical water treatment methods, and numerical models for estimating the risks of infection and disease associated with water use. The insights gained are used for the extrapolation of effective and sustainable management measures for the protection of health. The ICC was founded by the Technische Universität Wien and the Medical University of Vienna in 2010 and was able to be established on a long-term basis thanks to the competitive research funding provided by the Federal Ministry for Digital, Business and Enterprise (BMWFW). The Karl Landsteiner University of Health Sciences (KL) became a member of the ICC Water & Health in 2017. KL is now an official part of the research platform. http://www.waterandhealth.at

Vienna University of Technology

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...