Danish research team identifies the first gene that increases the risk of fainting

May 16, 2019

Fainting is not solely caused by external factors. Your genes also play a part. This has recently been documented by research team from the University of Copenhagen, Statens Serum Institut and Rigshospitalet. Based on data from more than 400,000 individuals they have identified the first gene that predisposes to fainting.

Heat, dehydration and anxiety can cause people to faint which potentially can be fatal if it is happening while driving or cycling. Now researchers from the University of Copenhagen, Statens Serum Institut and Rigshospitalet have come closer to explaining the phenomenon. They are the first to identify a gene associated with an increased risk of fainting, also called syncope.

The new research results have been published in the scientific journal Cardiovascular Research. The researchers have analysed data from the UK Biobank containing information on approximately 400,000 Britons. Out of the 400,000, 9,163 Britons had been in contact with the healthcare system due to fainting. In order to identify the genetic variants associated with fainting, the researchers systematically analysed millions of genetic variants in the participants' genomes.

'We have learned that a part of chromosome 2 increases the risk of fainting. This means that there is a genetic risk variant that predisposes to fainting. In addition, we are the first to show that fainting is genetically determined by linking an increased risk of fainting with an exact position in the genome,' says Associate Professor Morten Salling Olesen from the Department of Biomedical Sciences, University of Copenhagen and the Laboratory for Molecular Cardiology, Rigshospitalet.

All of us have 23 chromosome pairs - or a total of 46 chromosomes in each cell. The genetic variant identified by the researchers is situated on chromosome 2. A person can have one, two or no risk variants on chromosome 2. Statistical calculations show that if the risk variant is found on both versions of chromosome 2, the person in question has a 30 percent higher risk of fainting compared to persons with none of the two variants.

Subsequent analyses have shown that the risk variant for syncope determines the extent to which a particular gene on chromosome 2 is expressed. The researchers believe that this misregulation of the gene is probably what increases the risk of fainting.

Young Women Faint more than Men

The researchers have also analysed data from a Danish cohort of 54,656 individuals called iPSYCH from Statens Serum Institut. The result confirmed their previous findings. Among the participants who had experienced fainting the researchers found the same genetic risk variant as in the British cohort. They discovered that women under the age of 35 faint approximately twice as often as men under the age of 35. The cause hereof is still unknown.

'In the study we show that if you are a woman and you carry the risk variant on both chromosomes on chromosome pair number 2, you have an approximately three times increased risk of fainting compared with men not carrying the risk variant. Your gender and a single genetic variant in your genome reveal a substantial part of your risk of fainting,' says Morten Salling Olesen.

The common belief is that fainting is caused by shortage of blood and oxygen to the brain, which results in short-term, total loss of consciousness. There are various types of syncope, the most frequent being vasovagal syncope. Here a reflex - e.g. triggered by the sight of blood - causes significant lowered blood pressure conditioned by a slow heart rate and a dilation of the blood vessels leading to reduced flow of blood to the brain and fainting.

Between 20 and 30 percent of the population is believed to faint at least once in their lifetime. The gene identified by the researchers to associate with fainting or syncope is called ZNF804A. They still do not know precisely which type of syncope the gene predisposes to.

'This gene probably affects some of the reflexes that determine whether you faint or not. The question is whether the hereditary component is the same for all types of syncope. We believe that the gene we have identified predisposes to vasovagal syncope, which is the most common type of syncope. But we still do not know. First we need to study the gene in detail,' says Morten Salling Olesen.
-end-


University of Copenhagen The Faculty of Health and Medical Sciences

Related Chromosome Articles from Brightsurf:

Evolution of the Y chromosome in great apes deciphered
New analysis of the DNA sequence of the male-specific Y chromosomes from all living species of the great ape family helps to clarify our understanding of how this enigmatic chromosome evolved.

The male Y chromosome does more than we thought
While the Y chromosome's role was believed to be limited to the functions of the sexual organs, an University of Montreal's scientist has shown that it impacts the functions of other organs as well.

The birth of a male sex chromosome in Atlantic herring
The evolution of sex chromosomes is of crucial importance in biology as it stabilises the mechanism underlying sex determination and usually results in an equal sex ratio.

Why the 'wimpy' Y chromosome hasn't evolved out of existence
The Y chromosome has shrunken drastically over 200 million years of evolution.

Novel insight into chromosome 21 and its effect on Down syndrome
A UCL-led research team has, for the first time, identified specific regions of chromosome 21, which cause memory and decision-making problems in mice with Down syndrome, a finding that provides valuable new insight into the condition in humans.

Breakthrough in sex-chromosome regulation
Researchers at Karolinska Institutet in Sweden have uncovered a chromosome-wide mechanism that keeps the gene expression of sex chromosomes in balance in our cells.

B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.

Unveiling disease-causing genetic changes in chromosome 17
Extensive single Watson-Crick base pair mutations can occur in addition to duplication or deletion of an entire group of genes on chromosomal region 17p11.2.

What causes rats without a Y chromosome to become male?
A look at the brains of an endangered spiny rat off the coast of Japan by University of Missouri (MU) Bond Life Sciences Center scientist Cheryl Rosenfeld could illuminate the subtle genetic influences that stimulate a mammal's cells to develop as male versus female in the absence of a Y chromosome.

X chromosome: how genetics becomes egalitarian
In cell biology, men and women are unequal: men have an X chromosome, while women have two.

Read More: Chromosome News and Chromosome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.