Improving carbon-capturing with metal-organic frameworks

May 16, 2019

Metal-organic frameworks (MOFs) are versatile compounds hosting nano-sized pores in their crystal structure. Because of their nanopores, MOFs are now used in a wide range of applications, including separating petrochemicals, mimicking DNA, and removing heavy metals, fluoride anions, hydrogen, and even gold from water.

Gas separation in particular is of great interest to a number of industries, such as biogas production, enriching air in metal working, purifying natural gas, and recovering hydrogen from ammonia plants and oil refineries. "The flexible 'lattice' structure of metal-organic frameworks soaks up gas molecules that are even larger than its pore window making it difficult to carry out efficient membrane-based separation," says Kumar Varoon Agrawal, who holds the GAZNAT Chair for Advanced Separations at EPFL Valais Wallis.

Now, scientists from Agrawal's lab have greatly improved the gas separation by making the MOF lattice structure rigid. They did this by using a novel "post-synthetic rapid heat treatment" method, which basically involved baking a popular MOF called ZIF-8 (zeolitic imidazolate framework 8) at 360°C for a few seconds.

The method drastically improved ZIF-8's gas-separation performance - specifically in 'carbon capture', a process that captures carbon dioxide emissions produced from the use of fossil fuels, preventing it from entering the atmosphere. "For the first time, we have achieved commercially attractive dioxide sieving performance a MOF membrane," says Agrawal.

The scientists attribute the improvement to a shrinkage of the lattice parameters which makes the chemical bonds of MOF more rigid. The essential chemical composition, bonding environment, and crystallinity of the material was unaffected by the new procedure.

"Rapid heat treatment is an easy and versatile technique that can vastly improve the gas-separation performance of the MOF membranes," says Agrawal. "By making the lattice rigid, we can efficiently carry out a number of separations."

Deepu J. Babu, Guangwei He, Jian Hao, Mohammad Tohidi Vahdat, Pascal Alexander Schouwink, Mounir Mensi, Kumar Varoon Agrawal. Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture. Advanced Materials 14 May 2019. DOI: 10.1002/adma.201900855

Ecole Polytechnique Fédérale de Lausanne

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to