Nav: Home

Algal blooms in Lake Erie's central basin could produce neurotoxins

May 16, 2019

COLUMBUS, Ohio - Harmful algal blooms pose a unique toxic threat in Lake Erie's central basin, new research has found.

Not only do blooms routinely occur in this area, they can also produce types of cyanobacterial toxins that aren't typically detected through routine water-safety monitoring, according to a study published in the Journal of Great Lakes Research.

"The cyanobacteria we found in the central basin are completely different from what we've seen in the Toledo area in the western basin," said lead researcher Justin Chaffin, a senior researcher and research coordinator at The Ohio State University's Stone Laboratory.

"That's troubling because water treatment plants aren't typically set up to look for this bacteria or the toxins they create. It requires more expensive, more sophisticated equipment."

Harmful blue-green algal blooms and the toxic microcystins that accompany them have been a persistent threat in the lake's western basin. But until this study, bloom-related toxins hadn't been formally documented and analyzed in the central basin.

Several years ago, environmental scientists began hearing reports of harmful algal blooms in the central basin, in the waters just west of Cleveland. This was surprising at the time because the experts thought these environmental threats were concentrated primarily near Toledo, Chaffin said.

The water in the central basin hadn't been thought of as friendly to cyanobacteria because it isn't as warm or nutrient-rich as in the western basin, where nitrogen and phosphorous is plentiful because of agricultural runoff brought in by the Maumee River.

The research team sampled the water in four areas from 2013 to 2017 and analyzed satellite images taken before then for evidence of blooms. They found a cyanobacterium called Dolichospermum in the central basin during early-season blooms in July. This cyanobacterium is capable of producing a toxin that can attack the central nervous system in humans, and the researchers found genetic evidence that the bloom has the potential for the neurotoxin.

"What this means is that if you're a water plant operator in Cleveland, you have to be ready by late June or early July for cyanobacteria because they do have the potential to produce a really potent toxin. It could also be a problem for beachgoers if there's a north wind and these blooms gather along the Ohio shoreline," Chaffin said.

Researchers have shared these findings with the Ohio Environmental Protection Agency and with water plant operators, he said.

Later in the season, the researchers found the cyanobacterium Microcystis - the chief troublemaker in the western basin, which feeds off of excess phosphorous - in the central basin. The toxins, called microcystins, that it produces are most harmful to the liver and also a threat to the kidneys and reproductive system. Water plant operators routinely look for microcystins.

Figuring out precisely what is causing these unexpected algal blooms in the central basin will require more work, Chaffin said.

"We still can't pinpoint what's really causing these blooms because it's a complex interaction of several factors," he said.

But the new study did find evidence that it's a combination of low levels of iron (which decreases nitrogen availability), muddy water and a strain of Dolichospermum adapted to cooler waters.

The researchers found an association between central basin blooms and lower water clarity - meaning that when the water is muddier, the likelihood of harmful blue-green algae goes up. There's also evidence that iron plays a role. If there's not enough iron, beneficial algae's growth is suppressed, but the harmful algae found in this study likely flourish because they are efficient at capturing iron when the nutrient is in short supply, Chaffin said.

Continual work to reduce sediments, which lead to lower water clarity, is important, he said. And though phosphorous and nitrogen - which have driven blooms in the western basin - aren't present in high concentrations in the central basin, minimizing them is important to Lake Erie's overall health, he said.
-end-
CONTACT: Justin Chaffin, Chaffin.46@osu.edu

Written by Misti Crane, 614-292-5220; Crane.11@osu.edu

Ohio State University

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...