Nav: Home

Human antibody reveals hidden vulnerability in influenza virus

May 16, 2019

WHAT: The ever-changing "head" of an influenza virus protein has an unexpected Achilles heel, report scientists funded by the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health. The team discovered and characterized the structure of a naturally occurring human antibody that recognizes and disrupts a portion of the hemagglutinin (HA) protein that the virus uses to enter and infect cells. The investigators determined that the antibody, FluA-20, binds tightly to an area on the globular head of the HA protein that is only very briefly accessible to antibody attack. The site was not expected to be vulnerable to such a strike.

James E. Crowe, Jr., M.D., of Vanderbilt University Medical Center, Nashville, Tennessee, and Ian A. Wilson, D. Phil., of The Scripps Research Institute, San Diego, California, led the team. They isolated FluA-20 antibody from a person who had received many influenza immunizations. In a series of experiments, they showed that FluA-20 can "reach into" an otherwise inaccessible part of the three-part HA trimer molecule and cause it to fall apart, thus preventing the spread of virus from cell to cell. This discovery came as a surprise because this region of trimeric HA was thought to be stable and inaccessible to antibodies. Moreover, this region--unlike the rest of HA's head--varies little from strain to strain. In theory, antibody-based therapeutics directed at that precise region would be effective against many strains of influenza A virus. Similarly, vaccines designed to elicit antibodies against this target might provide long-lasting protection against any influenza strain, potentially eliminating the need for annual seasonal influenza vaccination.

In mouse studies, FluA-20 prevented infection or illness when the animals were exposed to four different influenza A viral subtypes that cause disease in humans. Two viruses used in the experiments, H1N1 and H5N1, are Group 1 influenza subtypes, while the two others, H3N2 and H7N9, are members of Group 2. Current influenza vaccines must contain viral components from both subtypes to elicit matching antibodies. A single vaccine able to generate potent antibodies against members of both groups could provide broad multi-year protection against influenza.
-end-
ARTICLE: S Bangaru et al. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell DOI: 10.1016/j.cell.2019.04.011 (2019).

WHO: NIAID Director Anthony S. Fauci, M.D., is available to discuss this research.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

This research was funded, in part, by NIH grants U19 AI117905, R56 AI127371 and P01 AI097092 from NIAID, P41 GM103393 from the National Institute of General Medical Sciences and UL1 TR002243 from the National Center for Advancing Translational Sciences, as well as by NIH contracts HHSN272201400024C, HHSN272201400008C and HHSN27220170041I.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH/National Institute of Allergy and Infectious Diseases

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...