Nav: Home

Bedbugs evolved more than 100 million years ago -- and walked the earth with T. rex

May 16, 2019

  • Researchers shed light on the complex evolutionary past of bedbugs.
  • Study finds bedbugs have been parasitic companions with other species aside from humans for more than 100 million years, and were around at the same time as dinosaurs.
  • Experts discover bedbugs are 50 million years older than bats - a mammal that people had previously believed to be their first host.
  • Findings will help us better understand how bedbugs evolved the traits that make them effective pests, something that may help us understand new ways of controlling them.
Bedbugs - some of the most unwanted human bed-mates - have been parasitic companions with other species aside from humans for more than 100 million years, walking the earth at the same time as dinosaurs.

Work by an international team of scientists, including the University of Sheffield, compared the DNA of dozens of bedbug species in order to understand the evolutionary relationships within the group as well as their relationship with humans.

The team discovered that bedbugs are older than bats - a mammal that people had previously believed to be their first host 50-60 million years ago. Bedbugs in fact evolved around 50 million years earlier.

Bedbugs rank high among the list of most unwanted human bedfellows but until now, little was known about when they first originated.

Experts have now discovered that the evolutionary history of bed bugs is far more complex than previously thought and the critters were actually in existence during the time of dinosaurs. More research is needed to find out what their host was at that time, although current understanding suggests it's unlikely they fed on the blood of dinosaurs. This is because bed bugs and all their relatives feed on animals that have a "home" - such as a bird's nest, an owl's burrow, a bat's roost or a human's bed - a mode of life that dinosaurs don't seem to have adopted.

The team spent 15 years collecting samples from wild sites and museums around the world, dodging bats and buffaloes in African caves infected with Ebola and climbing cliffs to collect from bird nests in South East Asia.

Professor Mike Siva-Jothy from the University of Sheffield's Department of Animal and Plant Sciences, who was part of the team, said: "To think that the pests that live in our beds today evolved more than 100 million years ago and were walking the earth side by side with dinosaurs, was a revelation. It shows that the evolutionary history of bed bugs is far more complex than we previously thought."

Dr Steffen Roth from the University Museum Bergen in Norway, who led the study, added: "The first big surprise we found was that bedbugs are much older than bats, which everyone assumed to be their first host. It was also unexpected to see that evolutionary older bedbugs were already specialised on a single host type, even though we don't know what the host was at the time when T. rex walked the earth."

The study also reveals that a new species of bedbug conquers humans about every half a million years: moreover that when bedbugs changed hosts, they didn't always become specialised on that new host and maintained the ability to jump back to their original host. This demonstrates that while some bedbugs become specialised, some remain generalists, jumping from host to host.

Professor Klaus Reinhardt, a bedbug researcher from Dresden University in Germany, who co-led the study, said: "These species are the ones we can reasonably expect to be the next ones drinking our blood, and it may not even take half a million years, given that many more humans, livestock and pets that live on earth now provide lots more opportunities."

The team also found that the two major bedbug pests of humans - the common and the tropical bedbug - are much older than humans. This contrasts with other evidence that the evolution of ancient humans caused the split of other human parasites into new species.

Professor Mike Siva-Jothy from the University of Sheffield, added: "These findings will help us better understand how bedbugs evolved the traits that make them effective pests - that will also help us find new ways of controlling them."

The researchers hope the findings will help create an evolutionary history of an important group of insects, allowing us to understand how other insects become carriers of disease, how they evolve to use different hosts and how they develop novel traits. The aim is to help control insects effectively and prevent the transmission of insect-vectored disease.

The research has been published in Current Biology.
-end-


University of Sheffield

Related Dinosaurs Articles:

In death of dinosaurs, it was all about the asteroid -- not volcanoes
Volcanic activity did not play a direct role in the mass extinction event that killed the dinosaurs, according to an international, Yale-led team of researchers.
Discriminating diets of meat-eating dinosaurs
A big problem with dinosaurs is that there seem to be too many meat-eaters.
Jurassic dinosaurs trotted between Africa and Europe
Dinosaur footprints found in several European countries, very similar to others in Morocco, suggest that they could have been dispersed between the two continents by land masses separated by a shallow sea more than 145 million years ago.
In the shadow of the dinosaurs
Research published this Wednesday in Scientific Reports describes Clevosaurus hadroprodon, a new reptile species from Rio Grande do Sul state in southern Brazil.
When the dinosaurs died, lichens thrived
When the asteroid hit, dinosaurs weren't the only ones that suffered.
Dinosaurs were thriving before asteroid strike that wiped them out
Dinosaurs were unaffected by long-term climate changes and flourished before their sudden demise by asteroid strike.
Did volcanoes kill the dinosaurs? New evidence points to 'maybe.'
Princeton geoscientists Blair Schoene and Gerta Keller led an international team of researchers who have assembled the first high-resolution timeline for the massive eruptions in India's Deccan Traps, determining that the largest eruption pulse occurred less than 100,000 years before the mass extinction that killed the (non-avian) dinosaurs.
Want to learn about dinosaurs? Pick up some Louisiana roadkill
Scientists are able to learn about an animal's ecosystem by studying the chemical makeup of its body, whether the animal died recently or millions of years ago.
How did alvarezsaurian dinosaurs evolve monodactyl hand?
An international research team led by XU Xing from the Institute of Vertebrate Palaeontology and Palaeoanthropology announced the discovery of two new Chinese dinosaurs: Bannykus and Xiyunykus, in the journal Current Biology, which shed light on how alvarezsaurian dinosaurs reduced and lost their fingers.
Those fragrances you enjoy? Dinosaurs liked them first
The compounds behind the perfumes and colognes you enjoy have been eliciting olfactory excitement since dinosaurs walked the Earth amid the first appearance of flowering plants, new research reveals.
More Dinosaurs News and Dinosaurs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.