Scientists find new type of cell that helps tadpoles' tails regenerate

May 16, 2019

Researchers at the University of Cambridge have uncovered a specialised population of skin cells that coordinate tail regeneration in frogs. These 'Regeneration-Organizing Cells' help to explain one of the great mysteries of nature and may offer clues about how this ability might be achieved in mammalian tissues.

It has long been known that some animals can regrow their tails following amputation - Aristotle observed this in the fourth century B.C. - but the mechanisms that support such regenerative potential remain poorly understood.

Using 'single-cell genomics', scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute at the University of Cambridge developed an ingenious strategy to uncover what happens in different tadpole cells when they regenerate their tails.

Recent Cambridge-led advances in next-generation sequencing mean that scientists can now track which genes are turned on (being expressed) throughout a whole organism or tissue, at the resolution of individual cells. This technique, known as 'single-cell genomics', makes it possible to distinguish between cell types in more detail based on their characteristic selection of active genes.

These breakthroughs are beginning to reveal a map of cellular identities and lineages, as well as the factors involved in controlling how cells choose between alternative pathways during embryo development to produce the range of cell types in adults.

Using this technology, Can Aztekin and Dr Tom Hiscock - under the direction of Dr Jerome Jullien - made a detailed analysis of cell types involved in regeneration after damage in African clawed frog tadpoles (Xenopus laevis). Details are published today in the journal Science.

Dr Tom Hiscock says: "Tadpoles can regenerate their tails throughout their life; but there is a two-day period at a precise stage in development where they lose this ability. We exploited this natural phenomenon to compare the cell types present in tadpoles capable of regeneration and those no longer capable."

The researchers found that the regenerative response of stem cells is orchestrated by a single sub-population of epidermal (skin) cells, which they termed Regeneration-Organizing Cells, or ROCs.

Can Aztekin says: "It's an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition."

In mammals, many tissues such as the skin epidermis, the intestinal epithelium and the blood system, undergo constant turnover through life. Cell lost through exhaustion or damage are replenished by stem cells. However, these specialised cells are usually dedicated to tissue sub-lineages, while the ability to regenerate whole organs and tissues has been lost in all but a minority of tissues such as liver and skin.

Professor Benjamin Simons, a co-author of the study says: "Understanding the mechanisms that enable some animals to regenerate whole organs represents a first step in understanding whether a similar phenomenon could be reawakened and harnessed in mammalian tissues, with implications for clinical applications."
-end-
Reference:

C. Aztekin et al. 'Identification of a regeneration-organizing cell in the Xenopus tail.' Science (17 May 2019). DOI: 10.1126/science.aav9996

About the Wellcome Trust/ Cancer Research UK Gurdon Institute:

Named after its co-founder, Nobel Laureate Sir John Gurdon, the Gurdon Institute (part of the University of Cambridge) is a world-leading centre for research into the biology of development and how normal growth and maintenance go wrong in diseases such as cancer.

More than 240 scientists work in the Gurdon Institute's purpose-built laboratories on projects ranging from breast cancer and brain development to liver regeneration and leukaemia. Many have made pioneering contributions to the fields of basic cell biology, cellular reprogramming, epigenetics and DNA repair.

Institute scientists use a range of model systems such as yeast, nematode worms, fruit flies, frogs, mammalian cells and organoids to study development and disease at the level of molecules, cells and tissues.

Research conducted at the Institute has so far led to a dozen spin-out companies (including KuDOS Pharmaceuticals, Abcam, Chroma Therapeutics, CellCentric, Mission Therapeutics and STORM Therapeutics) and five candidate drugs. One of these, the PARP inhibitor olaparib (Lynparza), has been approved in the UK, Europe and the USA for use against ovarian cancers, and in January 2018 in the USA for breast cancers.

http://www.gurdon.cam.ac.uk

University of Cambridge

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.