Nav: Home

Plants display nature's optofluidic machinery

May 17, 2016

WASHINGTON, D.C., May 17, 2016 - If you place a houseplant next to a sunny window, you may notice the leaves bending toward the light. Plants don't have a brain, so the vast majority of movement is controlled by the interaction of light and fluid within plant cells, says Demetri Psaltis, Dean of the School of Engineering and director of the Optics Laboratory at the École Polytechnique Fédérale de Lausanne in Switzerland.

Psaltis and his colleagues have published a new paper in the journal APL Photonics, from AIP Publishing, that highlights examples of so-called optofluidics in plants. Optofluidics combine optical systems, which respond to and control light, with microfluidic systems, which move fluids through small channels. Psaltis, who helped launched the optofluidics field with a 2006 paper in the journal Nature, says he hopes to draw the attention of the optics community to plant physiology.

"I was fascinated by how plants use microfluidics and optics to move, change color, and pump water," Psaltis said. "We hope by writing this paper to provide inspiration for new ideas in optofluidic devices."

Psaltis and his colleagues dove into the scientific literature on plants and chose five light/fluid interactions to highlight. They explored photosynthesis, the process plants use to convert sunlight into sugar. They also examined the recent literature on the light-mediated movement of chloroplasts, which are the tiny organelles in plants that contain the green photosynthetic pigment chlorophyll.

In addition to making fuel, plants also use light to move large amounts of water. Psaltis says he was most surprised and inspired by how plants suck water from the ground, control their temperature, and keep from drying out.

"The plant actually doesn't optimize the conversion of light to sugar," Psaltis said. "In a tree, for example, most of the energy is used to heat and evaporate water."

The evaporation process draws water from the ground into the tree's leaves, where it plays an important role in photosynthesis.

At night, when photosynthesis shuts down, many plants conserve water by closing pores in their leaves called stomata. The stomata are another example of an optofluidic system. Sunlight drives a flow of ions across membranes in the stomata, which in turn causes fluid to flow into the cells and they swell open.

Psaltis said his own research has been affected by what he learned while writing the APL Photonics paper. He is now looking more closely at how membranes control fluid flow and how they might be used in optofluidic devices.

The paper highlights just a small fraction of existing plant research. Psaltis said he hopes others will be motivated to dive deeper in the reservoir of knowledge.

"There's a vast amount of literature on plant physiology that technologists could look at," he said.
-end-
The article, "Optofluidics of Plants," is authored by Demetri Psaltis, Andreas E. Vasdekis and Jae-Woo Choi. It will be published in the journal APL Photonics on May 17, 2016 (DOI:10.1063/1.4947228). After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/app/1/2/10.1063/1.4947228.

The authors of this paper are affiliated with the École Polytechnique Fédérale de Lausanne and the University of Idaho.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See http://scitation.aip.org/content/aip/journal/app.

American Institute of Physics

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
How do plants protect themselves against sunburn?
To protect themselves against UV-B, which are highly harmful, plants have developed cellular tools to detect them and build biochemical defenses.
Pea plants demonstrate ability to 'gamble' -- a first in plants
An international team of scientists from Oxford University, UK, and Tel-Hai College, Israel, has shown that pea plants can demonstrate sensitivity to risk -- namely, that they can make adaptive choices that take into account environmental variance, an ability previously unknown outside the animal kingdom.
A 'Fitbit' for plants?
Knowing what physical traits a plant has is called phenotyping.
How plants conquered the land
Research at the University of Leeds has identified a key gene that assisted the transition of plants from water to the land around 500 million years ago.
Plants are 'biting' back
Calcium phosphate is a widespread biomineral in the animal kingdom: Bones and teeth largely consist of this very tough mineral substance.

Related Plants Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...