Nav: Home

First peek into the brain of a freely walking fruit fly

May 17, 2016

Researchers at the Kavli Institute for Brain and Mind at the University of California San Diego have developed a technique for imaging brain activity in a freely walking fruit fly. Working with one of the most common model organisms in science, Drosophila melanogaster, the team shows for the first time what goes on in the brain of the fly during courtship -- when it's unrestrained.

Dubbed "Flyception" by the researchers, the novel imaging system is described in Nature Methods.

Brain imaging in fruit flies is widespread. But most conventional techniques require immobilizing the fly's head under a microscope. Picture for a moment being asked to go on a first date strapped inside an fMRI scanner. It might be pretty hard to act natural (let alone charming). Fruit flies have had the same problem.

As a consequence of the restraints, brain responses during many fundamental fly behaviors remain poorly understood. The new technology, the researchers say, could change that -- enabling scientists to gain insights on neural processes that underlie mating, fighting, sleep, learning and memory.

The UC San Diego team's solution features two technical innovations. First, the researchers created an imaging window on the fruit fly's head. They surgically removed the exoskeleton from the top of the head, which is about the size of a few grains of salt, and sealed the opening with transparent silicon adhesive. They then placed a small piece of coverslip on the head to create a flat surface suitable for imaging. This window provides a view of the protocerebrum, or the upper half of the fly brain.

Second, they developed computer vision techniques to track a freely walking fly with unprecedented speed and precision. The system is built with rotating mirrors mounted directly above the walking arena that houses the fly and uses three cameras. As the fly walks, the mirrors, controlled by a low-magnification camera, rotate to bring the fly in view of a second, higher-speed, higher-magnification camera that further refines the mirror position so that the head of the fly is accurately positioned in the center of the view. A laser beam also targeted at the moving mirrors, and consequently the fly head, excites fluorescent genetic markers linked to specific neurons in the brain, and a third camera, a high-sensitivity one, records activity of those neurons. All of this takes place in real time at 1,000 frames per second.

Previous research has attempted to mimic a fly's freely moving behaviors. One approach, for example, features a fly treadmill, where a tethered fly walks on an air-suspended ball and is presented with various stimuli in a kind of virtual reality setup. But it has remained difficult to study, in restrained flies, the fundamental activities needed for survival or the sorts of complex social behaviors in which flies voluntarily interact with each other.

Although the fly and mammalian brains are quite different anatomically, there is evidence for similarities in genetic programming and network connectivity, the researchers say. An advantage to studying the fruit fly brain is that it is relatively small, with about 100,000 neurons, yet sufficiently complex to display social and cognitive behaviors. Recent research has also suggested some emotional behaviors in flies. Another advantage to studying the fly brain is the availability of powerful genetic and molecular tools that can be used to manipulate and record neural activity at the level of the single cell.

"Brain imaging is essential for advancing our understanding of the neural mechanisms underlying behavior and cognition," said corresponding author Takeo Katsuki, assistant project scientist with the Kavli Institute for Brain and Mind at UC San Diego, or KIBM. "One of the biggest goals of today's neuroscience research -- as outlined by the national BRAIN Initiative -- is to map brain activity at a whole brain scale in naturally behaving animals, so that we can understand how higher-order cognitive functions,and disorders, emerge through the concerted activity of multiple brain regions. The technology we developed provides a first step toward this goal by enabling monitoring brain activity in naturally behaving fruit flies."
Katsuki's co-authors on the study are Dhruv Grover, assistant project scientist at KIBM, and Ralph Greenspan, director of the Center for Brain Activity Mapping at UC San Diego, associate director of KIBM, and co-director of Cal-BRAIN, California's counterpart to the federal BRAIN Initiative.

The work was supported by the Kavli Institute for Brain and Mind Innovative Research Grant 2014-010 (to Katsuki) and by the Qualcomm Institute's Calit2 Strategic Research Opportunities Program CITS145 (Greenspan and Grover). The DOI for the paper is 10.1038/nmeth.3866.

University of California - San Diego

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...