Nav: Home

At attention, molecules!

May 17, 2016

When you touch your phone's screen, you might not realize that you've set off a molecular chain reaction.

Your fingertip sends a jolt of electricity (albeit tiny) that disturbs rows of molecules meticulously assembled at the screen's surface and dictates the action, whether it's opening a new window or typing the next word on your text message.

But what if those molecules could be jostled more easily and rapidly snap back in formation, enabling quicker touches and swipes--and on smaller screens to boot?

University of Iowa chemistry researchers are taking such an approach by examining how molecules in an electrically charged fluid (called an ionic liquid) are disrupted at the liquid's surface and how quickly they reassemble themselves. In a paper published online this month in the American Chemical Society journal Langmuir, the UI team reports that the molecules reassemble without having to be prodded into position. But their complete reorientation takes time, and the layer of molecules affected by surface disturbances is thicker than previously known--in some instances at least 100 times thicker. The results help better define the potential uses of ionic liquids, from touch screens to energy use and storage.

"One aspect that makes our finding intriguing is the molecules show the ability to self-assemble," says Scott Shaw, assistant professor in the UI Department of Chemistry and corresponding author on the paper. "That would make the process of making a capacitive touch screen simpler. Right now, the molecules (in touch screens) are forcibly arranged in hundreds of layers. Rather than doing that layer upon layer, we could put (an ionic liquid) drop on the surface, and the molecules would self-organize. And that could make the process faster and cheaper."

What makes ionic liquids attractive for potential commercial use is they carry charges and have a natural urge to be orderly. Think of them like soldiers who yearn to be in a precise formation at all times. Because of their negative and positive charges, molecules in ionic liquids could respond to external forces more quickly than other materials--whether it's the tap of a finger or an electrical impulse from a battery pack--and order themselves over longer distances from the surface point.

But how these molecules arrange themselves at the interfacial region--the area where molecules are affected by contact with the surface--and how deeply the ripple from that contact penetrates the molecular assembly has been something of a mystery.

Shaw's team found highly ordered layers of ionic liquids extending to 1,000 nanometers, or 1 micron, from solid or vapor surfaces. Previous studies had shown molecules in ionic liquids order to an upper limit of 50 nanometers.

"The chemical models that guide the community's understanding and definition of the interfacial region of (ionic liquids) are evolving even as the reported thicknesses and magnitude of the interfacial region is diverging," the authors write. "Our most recent results add a new and intriguing layer of intricacy to this field."

The researchers discovered the expanded interfacial layer through "dumb luck," Shaw says. Radhika Anaredy, a graduate student in Shaw's lab, had been using a slowly rotating disc to examine how gravity and shearing could be employed to produce thinner interfacial regions. Frustrated one evening, Anaredy turned off the disc and left the lab. When she returned the next morning and measured the ionic liquid film, she was surprised to see the interfacial layer was 700 nanometers, far thicker than she, or anyone else, expected.

That's when the researchers figured out the molecules simply needed more time to complete their assembly. In fact, when testing other ionic liquids, Shaw's group observed that the self-ordering begins nearly instantaneously, but the molecules in the entire interfacial region aren't completely organized for 25 minutes to two hours, depending on the liquid.

"Typically, these measurements are done over 30 seconds or two minutes," Shaw explains. "No one's ever sat around and waited for these things to hang out and arrange themselves."

Of course, a touch screen that takes any appreciable time to react wouldn't be very useful.

"The trick is to make the reordering much faster," Shaw says. "Right now, it takes at least 20 minutes. We'll need to make it much, much faster."
The American Chemical Society's Petroleum Research Fund and the Iowa Energy Center, created by the Iowa General Assembly, funded the work.

University of Iowa

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
More Molecules News and Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.