At attention, molecules!

May 17, 2016

When you touch your phone's screen, you might not realize that you've set off a molecular chain reaction.

Your fingertip sends a jolt of electricity (albeit tiny) that disturbs rows of molecules meticulously assembled at the screen's surface and dictates the action, whether it's opening a new window or typing the next word on your text message.

But what if those molecules could be jostled more easily and rapidly snap back in formation, enabling quicker touches and swipes--and on smaller screens to boot?

University of Iowa chemistry researchers are taking such an approach by examining how molecules in an electrically charged fluid (called an ionic liquid) are disrupted at the liquid's surface and how quickly they reassemble themselves. In a paper published online this month in the American Chemical Society journal Langmuir, the UI team reports that the molecules reassemble without having to be prodded into position. But their complete reorientation takes time, and the layer of molecules affected by surface disturbances is thicker than previously known--in some instances at least 100 times thicker. The results help better define the potential uses of ionic liquids, from touch screens to energy use and storage.

"One aspect that makes our finding intriguing is the molecules show the ability to self-assemble," says Scott Shaw, assistant professor in the UI Department of Chemistry and corresponding author on the paper. "That would make the process of making a capacitive touch screen simpler. Right now, the molecules (in touch screens) are forcibly arranged in hundreds of layers. Rather than doing that layer upon layer, we could put (an ionic liquid) drop on the surface, and the molecules would self-organize. And that could make the process faster and cheaper."

What makes ionic liquids attractive for potential commercial use is they carry charges and have a natural urge to be orderly. Think of them like soldiers who yearn to be in a precise formation at all times. Because of their negative and positive charges, molecules in ionic liquids could respond to external forces more quickly than other materials--whether it's the tap of a finger or an electrical impulse from a battery pack--and order themselves over longer distances from the surface point.

But how these molecules arrange themselves at the interfacial region--the area where molecules are affected by contact with the surface--and how deeply the ripple from that contact penetrates the molecular assembly has been something of a mystery.

Shaw's team found highly ordered layers of ionic liquids extending to 1,000 nanometers, or 1 micron, from solid or vapor surfaces. Previous studies had shown molecules in ionic liquids order to an upper limit of 50 nanometers.

"The chemical models that guide the community's understanding and definition of the interfacial region of (ionic liquids) are evolving even as the reported thicknesses and magnitude of the interfacial region is diverging," the authors write. "Our most recent results add a new and intriguing layer of intricacy to this field."

The researchers discovered the expanded interfacial layer through "dumb luck," Shaw says. Radhika Anaredy, a graduate student in Shaw's lab, had been using a slowly rotating disc to examine how gravity and shearing could be employed to produce thinner interfacial regions. Frustrated one evening, Anaredy turned off the disc and left the lab. When she returned the next morning and measured the ionic liquid film, she was surprised to see the interfacial layer was 700 nanometers, far thicker than she, or anyone else, expected.

That's when the researchers figured out the molecules simply needed more time to complete their assembly. In fact, when testing other ionic liquids, Shaw's group observed that the self-ordering begins nearly instantaneously, but the molecules in the entire interfacial region aren't completely organized for 25 minutes to two hours, depending on the liquid.

"Typically, these measurements are done over 30 seconds or two minutes," Shaw explains. "No one's ever sat around and waited for these things to hang out and arrange themselves."

Of course, a touch screen that takes any appreciable time to react wouldn't be very useful.

"The trick is to make the reordering much faster," Shaw says. "Right now, it takes at least 20 minutes. We'll need to make it much, much faster."
-end-
The American Chemical Society's Petroleum Research Fund and the Iowa Energy Center, created by the Iowa General Assembly, funded the work.

University of Iowa

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.