Nav: Home

At attention, molecules!

May 17, 2016

When you touch your phone's screen, you might not realize that you've set off a molecular chain reaction.

Your fingertip sends a jolt of electricity (albeit tiny) that disturbs rows of molecules meticulously assembled at the screen's surface and dictates the action, whether it's opening a new window or typing the next word on your text message.

But what if those molecules could be jostled more easily and rapidly snap back in formation, enabling quicker touches and swipes--and on smaller screens to boot?

University of Iowa chemistry researchers are taking such an approach by examining how molecules in an electrically charged fluid (called an ionic liquid) are disrupted at the liquid's surface and how quickly they reassemble themselves. In a paper published online this month in the American Chemical Society journal Langmuir, the UI team reports that the molecules reassemble without having to be prodded into position. But their complete reorientation takes time, and the layer of molecules affected by surface disturbances is thicker than previously known--in some instances at least 100 times thicker. The results help better define the potential uses of ionic liquids, from touch screens to energy use and storage.

"One aspect that makes our finding intriguing is the molecules show the ability to self-assemble," says Scott Shaw, assistant professor in the UI Department of Chemistry and corresponding author on the paper. "That would make the process of making a capacitive touch screen simpler. Right now, the molecules (in touch screens) are forcibly arranged in hundreds of layers. Rather than doing that layer upon layer, we could put (an ionic liquid) drop on the surface, and the molecules would self-organize. And that could make the process faster and cheaper."

What makes ionic liquids attractive for potential commercial use is they carry charges and have a natural urge to be orderly. Think of them like soldiers who yearn to be in a precise formation at all times. Because of their negative and positive charges, molecules in ionic liquids could respond to external forces more quickly than other materials--whether it's the tap of a finger or an electrical impulse from a battery pack--and order themselves over longer distances from the surface point.

But how these molecules arrange themselves at the interfacial region--the area where molecules are affected by contact with the surface--and how deeply the ripple from that contact penetrates the molecular assembly has been something of a mystery.

Shaw's team found highly ordered layers of ionic liquids extending to 1,000 nanometers, or 1 micron, from solid or vapor surfaces. Previous studies had shown molecules in ionic liquids order to an upper limit of 50 nanometers.

"The chemical models that guide the community's understanding and definition of the interfacial region of (ionic liquids) are evolving even as the reported thicknesses and magnitude of the interfacial region is diverging," the authors write. "Our most recent results add a new and intriguing layer of intricacy to this field."

The researchers discovered the expanded interfacial layer through "dumb luck," Shaw says. Radhika Anaredy, a graduate student in Shaw's lab, had been using a slowly rotating disc to examine how gravity and shearing could be employed to produce thinner interfacial regions. Frustrated one evening, Anaredy turned off the disc and left the lab. When she returned the next morning and measured the ionic liquid film, she was surprised to see the interfacial layer was 700 nanometers, far thicker than she, or anyone else, expected.

That's when the researchers figured out the molecules simply needed more time to complete their assembly. In fact, when testing other ionic liquids, Shaw's group observed that the self-ordering begins nearly instantaneously, but the molecules in the entire interfacial region aren't completely organized for 25 minutes to two hours, depending on the liquid.

"Typically, these measurements are done over 30 seconds or two minutes," Shaw explains. "No one's ever sat around and waited for these things to hang out and arrange themselves."

Of course, a touch screen that takes any appreciable time to react wouldn't be very useful.

"The trick is to make the reordering much faster," Shaw says. "Right now, it takes at least 20 minutes. We'll need to make it much, much faster."
-end-
The American Chemical Society's Petroleum Research Fund and the Iowa Energy Center, created by the Iowa General Assembly, funded the work.

University of Iowa

Related Molecules Articles:

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.