Nav: Home

Better cathode materials for lithium-sulphur-batteries

May 17, 2017

At present, lithium batteries are one of the best solutions for storing electrical power in a small space. Lithium ions in these batteries migrate from the anode to the opposite electrical pole, the cathode, during the discharge cycle. The anode and cathode generally consist of heavy-metal compounds that are expensive and toxic.

One interesting alternative is the lithium-sulphur battery. In this case, the cathode does not consist of heavy metals, but instead of sulphur -- an economical and widely available material. As lithium ions migrate to the cathode during the discharge cycle, a reaction takes place there that forms lithium sulphide (Li2S) via various intermediate lithium polysulfides. During cycling, dissolution of lithium polysulfides causes the battery's capacity to decline over the course of multiple charging cycles via the so-called "shuttle effect". For this reason, researchers the world over are working to improve cathode materials that would be able to chemically or physically confine or encapsulate polysulphides, such as with nanoparticles made of titanium dioxide (TiO2), for example.

Ti4O7-nanoparticles with interconnected pore structure

The HZB team headed by Prof. Yan Lu has now fabricated a cathode material that is even more effective. Here as well, nanoparticles provide confinement of the sulphur. However, they do not consist of titanium dioxide, but instead of Ti4O7 molecules arranged on a porous spherical surface. These porous nanoparticles bind polysulphides substantially more strongly than the usual TiO2 nanoparticles.

"We have developed a special fabrication process to generate this complex, three-dimensionally interconnected pore structure", explains Yan Lu. Yan Lu first fabricates a template made of a matrix of tiny polymer spheres that have porous surfaces. This template is prepared in additional steps, then submerged in a solution of titanium isopropoxide. A layer of Ti4O7 is formed on the porous spheres and remains after thermal treatment, which decomposes the underlying polymer. Compared with other cathode materials made of titanium oxides, the Ti4O7 nanosphere matrix possesses an extremely large surface area. 12 grams of this material would cover a football field.

Function decoded at BESSY II

X-ray spectroscopy measurements (XPS) at the CISSY experiment of BESSY II show that sulphur compounds bind strongly to the surface in the nanomatrix.

High specific capacity

This also accounts for the high specific capacity per gramme (1219 mAh) at 0.1 C (1 C = 1675 mA g-1). The specific capacity also declines very little during repeated charge/discharge cycles (0.094 per cent per cycle). By comparison, the specific capacity of cathode materials made of TiO2 nanoparticles is 683 mAh/g. To increase the conductivity of this material, it is possible to apply a supplementary coating of carbon to the nanoparticles. The highly porous structure remains intact after this process.

Upscaling is feasible

"We have been working to improve the repeatability of this synthesis for over a year. Now we know how to do it. Next, we will work on fabricating the material as a thin-film", says Yan Lu. And the best part: in this case, what has been successful in the laboratory can also be transferred to commercial manufacturing. This is because all the processes, from the colloid chemistry to the thin-film technology, are scalable.
The results are published in Advanced Functional Materials (2017): "Porous Ti4O7 Particles with Interconnected-Pores Structure as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries"; Shilin Mei, Charl J. Jafta, Iver Lauermann, Qidi Ran, Martin Kärgell, Matthias Ballauff, Yan Lu

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".