Nav: Home

How evolutionary miniaturization in insects influences their organs

May 17, 2017

Scientists from the Faculty of Biology of the Lomonosov Moscow State University have studied out, how organs of microinsects change their sizes in the process of miniaturization -- reduction in sizes of incest bodies in the process of evolution. Looking ahead, principles and regularities of miniaturization, revealed in animals, could be applied in biotechnology and robotization. The researchers have presented their project in Scientific reports journal.

Alexey Polilov, Doctor of Biological Sciences and the article author says: "The project idea was to estimate how different insect organs react on body size changes. We focused on miniaturization -- namely, evolutionary reduction in body sizes up to extremely small sizes. We wanted to study out what happens to the structure of organs when insect body sizes decrease from one centimeter up to tenths of a millimeter. This is necessary to understand what remains the same and what changes in an insect body".

Miniaturization or reduction in body sizes appears to be one of the main tendencies of insect evolution, as a result of which they become the size of unicellular organisms. One of the smallest insects are Coleoptera and Hymenoptera, Mymaridae. Their size is about fractions of a millimeter and it's very difficult to see them with an unaided eye. These insects emerged hundreds of millions years ago and they have been evolving all this time -- up to present day.

Microinsects are around us: they fly in cities, in parks, mountains and forests. They are represented in Moscow, but in low latitudes and tropics there are more of them. These insects have specific wings, made not as a blade like in dragonflies but like a vein with bristles along the edges, looking like a feather.

The biologists have analyzed a vast amount of data, obtained during last ten years, devoted to the studies of structure of tiny insects. The scientists have created 30 complete and 26 partial 3D computer reconstructions for 22 insect species of 11 families¸ belonging to five orders (Thysanura, Psocoptera, Thysanoptera, Coleoptera, and Hymenoptera). Insects of various sizes have been studied -- their body volume differed by a factor of more than 150 000. On the basis on these models the biologists have analyzed relative volumes of insect organs.

Alexey Polilov shares: "We've revealed the fact that the majority insect organ systems demonstrate great opportunities for scaling, namely they constrain constant proportions by multiple changes of body sizes. Organ systems keep structure and some of them -- even constant relative volume, despite multiple reductions in sizes."

The scientists have found out that metabolic systems, tissues of internal environment and tracheal system decrease proportionally to the reduction in body sizes even in the smallest insects. However, reproductive and nervous systems, on the contrary, demonstrate multiple increase in relative volume as the body sizes decrease.

The scientist clarifies: "It seems that these very systems limit minimal body sizes in insects. Our results, being compared together with scientific literature on vertebrate animals, show that at the same allometry scales most organs in vertebrates change non-proportionally. So, we've shown that insect structure is better adapted to scaling and especially, to reduction in body sizes".

In the future the researchers are going to expand a range of studied objects due to covering insects from different orders, for instance, Collembola, Acari and other arthropods.
-end-


Lomonosov Moscow State University

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.