Nav: Home

How the brain 'plays' with predictability and randomness to choose the right time to act

May 17, 2017

Deciding when to take an action can be as important as deciding what action to take. Even in the best controlled of laboratory settings, the timing of a subject's decisions is impossible to completely predict. And this apparently random component may play an important role in evading competition and exploring options.

Now, neuroscientists at the Champalimaud Centre for the Unknown, in Lisbon, Portugal, have shown that the exact moment of the execution of an action is the combination of a predictable and an unpredictable component that are processed by different regions of the brain. Their results are published in the May 17 issue of the journal Neuron.

Being able to choose the right time to act is crucial for a successful outcome in many situations. Act too soon or too late, and the target will be missed, an opportunity lost or time wasted. Getting the timing right requires that the one learns from experience and adapts to the current situation.

One might think that injecting "noise" in the timing of actions would be counter-productive. But it often pays to be unpredictable. Take soccer: the ability of a skilled shooter to outwit the goalkeeper depends in part on his ability to deliver the ball at an unpredictable time and location. If the same action were performed in the exact same way and at precisely the same moment every time a situation presents itself, organisms would be easily outwitted by competitors. Moreover, there would be no room for exploring better solutions, for creativity.

How does the brain manage to optimize the timing of actions to the circumstances whilst still retaining a good measure of unpredictability? That is what the authors of the new study set out to unravel.

"Our goal was to understand better the mechanisms in the brain that determine the timing of actions", says Zach Mainen, who led the study. "We were especially interested in the fact that action timing often shows great variability, apparent randomness, even when the conditions are held constant."

To study this, the scientists trained rats to perform a task that tested the animals' patience. The rats heard a tone and had to decide, at a certain point, to move to a water dispenser to quench their thirst. However, they learned that if they were patient enough to wait for a second tone (for a random amount of time) before moving to the spot where they would be rewarded, they got substantially more water than if they sought their reward before hearing the second tone.

As expected, in this setting, how long the animal is willing to wait for the second tone is partly predictable. But at the same time, there is an important random component, a substantial dose of unpredictability.

Separation of powers

In a second phase, the team repeated the experiments, only this time they also recorded the simultaneous activity of multiple neurons in the rats' brain, either in a region of the prefrontal cortex (involved in decision-making, planification and learning) called MPFC, or in a region of the motor cortex, M2, thought to be involved in the direct control of movements. Both these regions are needed for deciding the right timing of actions.

With neural recording experiments, they found that, in M2, neuronal activity reflected both random and predictable components of action timing. But the "most surprising" finding, says Masayoshi Murakami, the study's first author, was that MPFC has nothing to do with action timing randomness. "I showed that MPFC does not care about the random part - and it is this separation [of function between M2 and MPFC] that is new", he adds.

"We found that two different regions within the brain seem to play very different roles in the generation of action timing", summarizes Mainen. "One area, the medial prefrontal cortex [MPFC] appears to keep track of the ideal waiting time based on experience. A second area, the secondary motor cortex, also keeps track of the ideal timing and in addition shows variability that renders individual decisions unpredictable. This suggests a previously not well appreciated 'separation of powers' within the brain."

How do these two regions interact? According to Mainen, the new results also suggest that the generation of the deterministic component of action timing happens first, and that the random (or "stochastic") component is then added on top. "The variability does not 'flow' backwards", he argues. "Otherwise, both regions would show variability."

"A similar interplay between optimization and generation of variability underlies the theory of evolution", concludes Mainen. "Here, we have begun to see how this plays out in the brain."

Champalimaud Centre for the Unknown

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...