Porous materials make it possible to have nanotechnology under control

May 17, 2018

Half metal, half organic structure, like Robocop himself, is the material known as MOF, short for Metal Organic Framework. MOF has been developed by scientists and applied to a myriad of products from sorbents to batteries for electronic devices. This material emerged from the nanotechnology revolution that turned material design upside down and facilitated the improvement of chemical processes. MOFs are a new organic and inorganic hybrid material made up of metallic nodes and organic links characterized by their porosity, that is to say, by the intermolecular spaces that it is comprised of.

The study and understanding of its properties and applicability have centered on recent work by Professor Rafael Luque, of the University of Cordoba Organic Chemistry Department research group FQM-383, and a Southern China Technology University research group, published in Dalton Transactions. The research has proven that in addition to the ability to be used in catalysis processes - by means of which the speed of a chemical reaction is increased - these materials are built as stabilizers of metallic nanostructures. So, it paves the way for working with these kinds of nanoentities, thanks to the control over their stability.

The range of possibilities detailed in Luque's work depend on the encapsulated metal/metallic structure, which could be used for CO2 absorption or steam absorption when working with fuel cells and other kinds of batteries.

The methodology designed by Rafael Luque and his team is considered innovative because it enables control over material design to degrees that were unthinkable before. Previously, these porous materials that can accommodate nanoparticles have been studied, but never before has anyone specified the exact way to thoroughly control all the parameters and make them so pliable.

Diversifying the use of these metal-organic materials as much as possible to take advantage of the stability and pliability that they give to nanostructures will be the main focus for this research group henceforth. This line of research will be described in developing studies that are currently being performed by University of Cordoba research group FQM-383.
-end-


University of Córdoba

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.