What we've learned about the nucleolus since you left school

May 17, 2018

The size of a cell's nucleolus may reveal how long that cell, or even the organism that cell belongs to, will live. Over the past few years, researchers have been piecing together an unexpected link between aging and an organelle typically known as the cell's ribosome factory (or perhaps just a blob in the middle of the nucleus). A May 17th review in the journal Trends in Cell Biology outlines the connections between the nucleolus and age-related pathways--such as those associated with dietary restriction or progeria.

"The nucleolus is perceived as a basic housekeeper: It's responsible for producing ribosomal RNA, which is important for the synthesis of proteins that are essential to the vitality of the cell," says Adam Antebi, director of the Max Planck Institute for Biology of Ageing in Germany, who co-authored the review with postdoctoral fellow Varnesh Tiku. "But our work and other people's work shows that the nucleolus plays many different roles, including lifespan control."

Studies of aging and the nucleolus have been carried out in yeast, worms, fruit flies, mice, as well as early data in humans undergoing dietary restriction and exercise. Worms are particularly useful for aging research because they only live for about a month, so it's possible to tweak their genomes and see what extends or shortens their lifespans. Antebi and others have seen that common pathways related to aging ultimately affect nucleolar size--organisms with enlarged nucleoli have shorter lifespans and those with shrunken nucleoli have longer lifespans.

Many of these longevity pathways converge on a nucleolar regulating gene called NCL-1. Dietary restriction, reduced insulin signaling, and other lifespan-extending interventions increase the activity of NCL-1, reducing nucleolar size and the creation of ribosomes. Worms lacking NCL-1 receive no age-extending benefits from these therapies. Relatedly, people with diseases such as cancer or progeria that accelerated aging have enlarged nucleoli with increased ribosome biogenesis. It is still unclear why a small nucleolus can extend lifespan, but it may be linked to balancing cellular renewal and repair.

"Within an organism, within different tissues, it's for sure that nucleolar size can vary quite a bit depending on the metabolic activities of the cells, so for example, in C. elegans, neurons have very small nucleoli whereas they are quite big in skin cells or muscle cells," Antebi says. "It turns out that neurons in C. elegans maintain their structure well into old age, whereas muscle cells and skin cells tend to deteriorate more rapidly in the organism. Thus, even within an organism different tissues have different nucleolar size and it may reflect different rates of aging."

Does this mean that the nucleolus acts as a kind of cellular timer? Not quite. Antebi argues that the organelle--which lacks a membrane and has a unique biochemistry that keeps it separate form the nucleus--is more likely the center for growth control. Too much growth and cells turn cancerous, too little and tissue repair becomes dysfunctional.

"The nucleolus is such an important organelle, it's what has been selected to coordinate all of the different informational processes in the cell that bring protein and RNA together," he says. "What is life but the proper processing of information and responding to environments in ways that are healthful for the cell and organism."

Antebi is interested in learning more about whether the nucleolus is acting on specific age-related pathways or if the organelle has a global effect on organism-level physiology such as immune function or metabolic regulation. The work also raises the possibility of the nucleolus being a biomarker to monitor the health or longevity of organisms, and a pilot experiment in humans supported this potential. "What if? Perhaps it's a bit of a stretch, but it's an intriguing idea," he says.
-end-
Trends in Cell Biology, Tiku and Antebi: "Nucleolar Function in Lifespan Regulation" https://www.cell.com/trends/cell-biology/fulltext/S0962-8924(18)30063-1

Trends in Cell Biology (@TrendsCellBio), published by Cell Press, is a monthly review journal of molecular and cell biology. Monitoring the breadth and depth of current research in cell biology, articles report on new developments as they happen and integrate methods, disciplines, and principles. Visit: http://www.cell.com/trends/cell-biology. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.