Emergency contact information helps researchers branch out family tree

May 17, 2018

When you go to the doctor or hospital, one piece of information that you're always asked to provide--in addition to your name, address, and insurance information--is an emergency contact. Often, that person is a blood relative. Now, a collaborative team of researchers from three major academic medical centers in New York City is showing that emergency contact information, which is included in individuals' electronic health records (EHRs), can be used to generate family trees. Those family trees in turn can be used to study heritability in hundreds of medical conditions. The study appears May 17 in the journal Cell.

"This is the first time family pedigrees have been built from EHRs," says Fernanda Polubriaginof, a graduate student in biomedical informatics at Columbia University and the study's first author. "It's also the largest study ever of the heritability of traits using EHRs."

The three participating academic medical institutions were Columbia University Vagelos College of Physicians and Surgeons and Weill Cornell Medicine (both in conjunction with New York-Presbyterian Hospital) and the Icahn School of Medicine at Mount Sinai. Using an algorithm that matched up people's first and last names, addresses, and phone numbers--as well as how they were related to their emergency contact person--the investigators were able to identify 7.4 million familial connections.

Once the relationships were determined, patient identifiers were removed in order to protect privacy. Patient identifiers, including names, were only used by the algorithm in the matching process and were not shared between institutions.

The database that was generated was then used to compute heritability estimates for 500 different disease phenotypes based on test results and observations that appear in the medical records. These traits included things like blood disorders, skin diseases, and mental health conditions.

"This is really exciting new research, and it's only the beginning of these kinds of studies," says Nicholas Tatonetti, an assistant professor of biomedical informatics at Columbia University Vagelos College of Physicians and Surgeons and one of the paper's senior authors. "We identified the heritability of 400 traits that have never been looked at in this way before. Until now, we didn't know they were heritable. This research opens up opportunities for many more discoveries."

To validate the accuracy of their methods, the investigators compared their findings with known heritability of a few well-studied inherited diseases, like sickle cell disease. Another component to validating the methods involved the inclusion of Mt. Sinai. Because that center already had a large biobank, including more than 25,000 people who have provided their familial relationships and been genotyped, Mt. Sinai's data could be used to confirm that the research methodology was accurate.

The investigators say their data will be useful in establishing the heritability level of many common conditions. One example reported in this paper is the degree to which high levels of HDL and LDL cholesterol in the blood are inherited. Previous studies on the heritability of high cholesterol used datasets of a few dozen or a few hundred people. In the current paper, the investigators had cholesterol data collected from 120,000 people. They found that having an increased level of HDL is 50% heritable, while increased LDL is only 25% heritable. Future studies can look for the hereditary contribution of any trait that may be part of someone's EHR.

Polubriaginof notes one thing that's especially valuable about the new dataset is that it includes people from a wide range of races and ethnicities. "The majority of research on disease heritability has been done in Caucasians of mostly northern European descent," she says. "This dataset will allow us for the first time to compute whether there are differences in other races and ethnicities."

Tatonetti explains that because of privacy rules, at this point, the data can only be used for research purposes. "It's easy to get excited about clinical utility, but we're not there yet," he says. "However, in the future, with proper consent, you could imagine information like this being shared with clinicians so they can alert their patients about potential health risks and additional screenings they may need to undergo. It could be very useful for identifying conditions like type 2 diabetes and celiac disease."

For each of the 500 conditions, the investigators are releasing privacy-protected datasets that can be used by researchers at other institutions. They are also sharing their computational algorithm so that scientists at other hospitals can conduct studies of their own patients.
The researchers who participated in this study are funded by the Agency for Healthcare Research and Quality (AHRQ), the National Institutes of Health (the National Institute of General Medical Sciences, the National Institute for Diabetes and Digestive and Kidney Diseases, the National Cancer for Advancing Translational Science, the National Library of Medicine, and the National Human Genome Research Institute), and a Herbert Irving Scholars Award. This research was supported by the Amazon Web Services Cloud Credits for Research program. It also used resources from the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science. Collection of genetic samples was supported by AHRQ.

Cell, Polubriaginof et al.: "Disease heritability inferred from familial relationships reported in medical records." http://www.cell.com/cell/fulltext/S0092-8674(18)30525-7

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Electronic Health Records Articles from Brightsurf:

Inclusion of patient headshots in electronic health records decreases order errors
Analysis of the millions of orders placed for participating patients over a two-year span showed the rate of wrong patient order entry to be 35 percent lower for patients whose photos were included in their EHR.

Opioid use disorder? Electronic health records help pinpoint probable patients
A new study suggests that patients with opioid use disorder may be identified using information available in electronic health records, even when diagnostic codes do not reflect this diagnosis.

Largest study to date of electronic dental records reviews understudied populations
The largest study to date of electronic dental records (EDRs) delves into both previously inaccessible data and data from understudied populations with the ultimate goal of improving oral treatment outcomes.

Electronic health records fail to detect up to 33% of medication errors
Despite improvements in their performance over the past decade, electronic health records (EHRs) commonly used in hospitals nationwide fail to detect up to one in three potentially harmful drug interactions and other medication errors, according to scientists at University of Utah Health, Harvard University, and Brigham and Women's Hospital in Boston.

Mass General team detects Alzheimer's early using electronic health records
A team of scientists has developed a software-based method of scanning electronic health records to estimate the risk that a person will receive a dementia diagnosis.

Yale study: Doctors give electronic health records an 'F'
The transition to electronic health records (EHRs) was supposed to improve the quality and efficiency of healthcare for doctors and patients alike -- but these technologies get an 'F' rating for usability from health care professionals, and may be contributing to high rates of professional burnout, according to a new Yale-led study.

Regenstrief scientist recommends ways to improve electronic health records
In an editorial in the Journal of General Internal Medicine, Regenstrief Institute research scientist Michael Weiner, MD, MPH highlights shortcomings of electronic health records (EHRs) in living up to their full potential, and suggests ways to use EHRs to work more efficiently and ultimately more effectively for patients.

FutureNeuro researchers integrate genomics data in to electronic patient records
Researchers from the HSE Epilepsy Lighthouse Project and FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases hosted by RCSI, have developed a new genomics module in the Irish National Epilepsy Electronic Patient Record (EPR) system.

New research finds private practice physicians less likely to maintain electronic records
The research led by Jordan Everson, Ph.D., assistant professor in the Department of Health Policy at Vanderbilt University Medical Center (VUMC), finds striking differences in use of electronic health records (EHRs) among more than 291,000 physicians included in the study.

Electronic health records decision support reduces inappropriate use of GI test
Programming a hospital's electronic health record system (EHR) to provide information on appropriate use of a costly gastrointestinal panel and to block unnecessary orders reduced inappropriate testing by 46% and saved up to $168,000 over 15 months, according to a study published today in Infection Control & Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America.

Read More: Electronic Health Records News and Electronic Health Records Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.