Repeating seismic events offer clues about Costa Rican volcanic eruptions

May 17, 2018

Repeating seismic events--events that have the same frequency content and waveform shapes--may offer a glimpse at the movement of magma and volcanic gases underneath Turrialba and Poas, two well-known active volcanoes in Costa Rica.

At the 2018 SSA Annual Meeting, Rebecca Salvage of the Observatorio Vulcanologico y Sismologico de Costa Rica presented an analysis of these repeating signals from the volcanoes since July 2016.

When these repeating events are identified at a seismic station, researchers assume that these "events are all produced by a single mechanism and at a similar location at depth ... and by a source which is either non-destructive or able to quickly renew itself," Salvage noted. "Therefore, the identification and an understanding of repeating seismicity may allow us some insight into which parts of the volcanic system at depth are active, and the frequency content of the repeating seismicity may be indicative of processes occurring at depth."

At Turrialba, for instance, Salvage and her colleagues identified a type of repeating event called "drumbeat seismicity," characterized by a very short time interval between events. In January 2017, drumbeat seismicity at the volcano lasted less than three hours but contained hundreds of events. Eight hours later, there was a small eruption at Turrialba. In this case, the drumbeat seismicity may have been a "precursor signal" of the eruption, related to magma moving toward the surface, Salvage said.

"However, not all eruptions are preceded by these types of earthquakes, and often these earthquakes occur with no identifiable eruptive activity," she added. "A better understanding of drumbeats in terms of the conditions under which they do occur, and statistical analysis on inter-event times and occurrence rates will allow us to better assess whether these can actually be used as a warning tool."

At Poas, the researchers noted another interesting halt in six families of repeating seismic events, just two hours after a swarm of magnitude 2.7 and higher earthquakes was recorded very near the volcano. In this case, Salvage and her colleagues think that the earthquakes may have influenced the stress field around the volcano in a way that halted the repeating events. The stress field may have changed when the earthquakes generated small displacements on local faults that created similar small diversions in magmatic gas and ash rising to the surface.
-end-
The 2018 Annual Meeting, held May 14-17 in Miami, Florida, is a joint conference between the Seismological Society of America and the Latin American and Caribbean Seismological Commission (LACSC).

Seismological Society of America

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.