Nav: Home

What happens if we run out?

May 17, 2018

To slow the evolutionary progression of weeds and insect pests gaining resistance to herbicides and pesticides, policymakers should provide resources for large-scale, landscape-level studies of a number of promising but untested approaches for slowing pest evolution. Such landscape studies are now more feasible because of new genomic and technological innovations that could be used to compare the efficacy of strategies for preventing weed and insect resistance.

That's the takeaway recommendation from a North Carolina State University review paper addressing pesticide resistance published today in the journal Science.

Pesticide resistance exacts a tremendous toll on the U.S. agricultural sector, costing some $10 billion yearly. Costs could also increasingly accrue on human lives. If insecticide-coated bed nets and complementary insecticide spraying failed to slow the transmission of malaria by pesticide-resistant mosquitoes, for example, the human health costs in places like Africa could be catastrophic.

"What is the impact on people if these herbicides and pesticides run out?" said Fred Gould, William Neal Reynolds Professor of Agriculture at NC State and the corresponding author of the paper. "Resistance to pesticides is rising in critical weed and insect species, threatening our ability to harness these pests. Weed species have evolved resistance to every class of herbicide in use, and more than 550 arthropods have resistance to at least one pesticide."

Consider glyphosate, the powerhouse weed killer used ubiquitously in the United States to protect major crops like corn and soybeans. A bit more than 20 years ago, crops were genetically engineered to withstand glyphosate, allowing them to survive exposure to the chemical while weeds perished. By 2014, some 90 percent of planted U.S. corn, soybean and cotton crops were genetically modified to withstand glyphosate. Unfortunately, as the evolutionary arms race progresses, many weeds have figured out how to evolve resistance to glyphosate, making the chemical increasingly ineffective and forcing farmers to look for other or new solutions.

Some of these "new" solutions are actually old, as the herbicides 2,4-D and Dicamba, developed in the 1940s and 1960s, respectively, are currently getting a second look as possible widespread weed weapons.

"We're working down the list of available tools to fight weeds and insect pests," said Zachary Brown, assistant professor of agricultural and resource economics at NC State and a co-author of the paper. "It hasn't been economically feasible to develop new herbicides to replace glyphosate, for example, so what's old is becoming new again. But the current incentives don't seem to be right for getting us off this treadmill."

Besides ecology and economics, the authors stress that sociological and political perspectives also set up roadblocks to solving the problems of pest resistance. Cultural practices by farmers - whether they till their land or not, how they use so-called refuges in combination with genetically modified crop areas and even how often they rotate their crops - all play a big role in pest resistance.

"Any proposed solutions also need to include perspectives from the individual farmer, community and national levels," said Jennifer Kuzma, Goodnight-NC GSK Foundation Distinguished Professor and co-author of the paper.

The authors propose large-scale studies that would test the efficacy of a particular pesticide resistance strategy in one large area - thousands of acres or more - and how weeds and crop yields compare to large "control" areas that don't utilize that particular strategy. Farmers would receive incentives to participate; perhaps subsidies already allocated to farmers could be shifted to provide these participatory incentives, the authors suggest.

"In the end, are we going to outrun the pests or are they going to outrun us?" Gould said.
-end-
The work was funded by NC State's Genetic Engineering and Society Center, by USDA National Institute of Food and Agriculture grants 2012- 33522-19793 and 2016-33522-25640, and by USDA National Institute of Food and Agriculture HATCH project NC02520.

Note to editors: An abstract of the paper follows.

Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance?

Authors: Fred Gould, Zachary Brown and Jennifer Kuzma, North Carolina State University

Published: May 17, 2018, in Science

DOI: 10.1126/science.aar3780

Abstract: Resistance to insecticides and herbicides has cost billions of U.S. dollars in the agricultural sector and could result in millions of lives lost to insect-vectored diseases. We mostly continue to use pesticides as if resistance is a temporary issue that will be addressed by commercialization of new pesticides with novel modes of action. However, current evidence suggests that insect and weed evolution may outstrip our ability to replace outmoded chemicals and other control mechanisms. To avoid this outcome, we must address the mix of ecological, genetic, economic, and sociopolitical factors that prevent implementation of sustainable pest management practices. We offer a proposition.

North Carolina State University

Related Pesticides Articles:

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.
Wasps' gut microbes help them -- and their offspring -- survive pesticides
Exposure to the widely used pesticide atrazine leads to heritable changes in the gut microbiome of wasps, finds a study publishing Feb.
A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.
SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Hypertension found in children exposed to flower pesticides
Researchers at University of California San Diego School of Medicine found higher blood pressure and pesticide exposures in children associated with a heightened pesticide spraying period around the Mother's Day flower harvest.
Banned pesticides in Europe's rivers
Tests of Europe's rivers and canals have revealed more than 100 pesticides -- including 24 that are not licensed for use in the EU.
The persistence of pesticides threatens European soils
A study developed by researchers from the Diverfarming project finds pesticide residues in the soils of eleven European countries in six different cropping systems
Honeybees at risk from Zika pesticides
Up to 13 percent of US beekeepers are in danger of losing their colonies due to pesticides sprayed to contain the Zika virus, new research suggests.
Alternatives to pesticides -- Researchers suggest popular weeds
Research proves that extracts from S. nigrum and D. stramonium, globally existing weed species, may help to protect crop systems against agricultural pests.
More Pesticides News and Pesticides Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.