Nav: Home

Keep the light off: A material with improved mechanical performance in the dark

May 17, 2018

Researchers at Nagoya University find an inorganic semiconductor is brittle when exposed to light, but flexible in the dark

Nagoya, Japan - Inorganic semiconductors such as silicon are indispensable in modern electronics because they possess tunable electrical conductivity between that of a metal and that of an insulator. The electrical conductivity of a semiconductor is controlled by its band gap, which is the energy difference between its valence and conduction bands; a narrow band gap results in increased conductivity because it is easier for an electron to move from the valence to the conduction band. However, inorganic semiconductors are brittle, which can lead to device failure and limits their application range, particularly in flexible electronics.

A group at Nagoya University recently discovered that an inorganic semiconductor behaved differently in the dark compared with in the light. They found that crystals of zinc sulfide (ZnS), a representative inorganic semiconductor, were brittle when exposed to light but flexible when kept in the dark at room temperature. The findings were published in Science.

"The influence of complete darkness on the mechanical properties of inorganic semiconductors had not previously been investigated," study coauthor Atsutomo Nakamura says. "We found that ZnS crystals in complete darkness displayed much higher plasticity than those under light exposure."

The ZnS crystals in the dark deformed plastically without fracture until a large strain of 45%. The team attributed the increased plasticity of the ZnS crystals in the dark to the high mobility of dislocations in complete darkness. Dislocations are a type of defect found in crystals and are known to influence crystal properties. Under light exposure, the ZnS crystals were brittle because their deformation mechanism was different from that in the dark.

The high plasticity of the ZnS crystals in the dark was accompanied by a considerable decrease in the band gap of the deformed crystals. Thus, the band gap of ZnS crystals and in turn their electrical conductivity may be controlled by mechanical deformation in the dark. The team proposed that the decreased band gap of the deformed crystals was caused by deformation introducing dislocations into the crystals, which changed their band structure.

"This study reveals the sensitivity of the mechanical properties of inorganic semiconductors to light," coauthor Katsuyuki Matsunaga says. "Our findings may allow development of technology to engineer crystals through controlled light exposure."

The researchers' results suggest that the strength, brittleness, and conductivity of inorganic semiconductors may be regulated by light exposure, opening an interesting avenue to optimize the performance of inorganic semiconductors in electronics.
-end-
The article "Extraordinary Plasticity of an Inorganic Semiconductor in Darkness" was published in Science at DOI: 10.1126/science.aar6035.

Nagoya University

Related Semiconductor Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
Graphene 'copy machine' may produce cheap semiconductor wafers
A new technique developed by MIT engineers may vastly reduce the overall cost of wafer technology and enable devices made from more exotic, higher-performing semiconductor materials than conventional silicon.
Method improves semiconductor fiber optics, paves way for developing devices
A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.
Scientists discover new 'boat' form of promising semiconductor GeSe
Princeton researchers have discovered a new form of the simple compound GeSe that has surprisingly escaped detection until now.
UNIST engineers oxide semiconductor just single atom thick
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology, has introduced a new technique that efficiently isolates circulating tumor cells from whole blood at a liquid-liquid interface.
Semiconductor-free microelectronics are now possible, thanks to metamaterials
Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device.
Notre Dame researchers find transition point in semiconductor nanomaterials
Collaborative research at Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials.
Graphene key to growing 2-dimensional semiconductor with extraordinary properties
A newly discovered method for making two-dimensional materials could lead to new and extraordinary properties, particularly in a class of materials called nitrides, say the Penn State materials scientists who discovered the process.
UA organic semiconductor research could boost electronics
A team of UA researchers in engineering and chemistry has received $590,000 from the National Science Foundation to enhance the effectiveness of organic semiconductors for making ultrathin and flexible optoelectronics like OLED displays for TVs and mobile phones.
NREL theory establishes a path to high-performance 2-D semiconductor devices
Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2-D) semiconductors in electronic and optoelectronic devices.

Related Semiconductor Reading:

Semiconductor Manufacturing Handbook, Second Edition
by Hwaiyu Geng (Author)

Semiconductor Device Fundamentals
by Robert F. Pierret (Author)

Semiconductor Material and Device Characterization
by Dieter K. Schroder (Author)

The Essential Guide to Semiconductors
by Jim Turley (Author)

Semiconductor Physics And Devices: Basic Principles
by Donald A. Neamen (Author)

Physics of Semiconductor Devices
by Simon M. Sze (Author), Kwok K. Ng (Author)

Fabless: The Transformation of the Semiconductor Industry
by Daniel Nenni (Author), Paul McLellan (Contributor)

Semiconductor Devices: Physics and Technology
by Simon M. Sze (Author), Ming-Kwei Lee (Author)

Essential Guide to Semiconductors
by John Holland (Editor)

Chips and Change: How Crisis Reshapes the Semiconductor Industry (The MIT Press)
by The MIT Press

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.