Nav: Home

New era for blood transfusions through genome sequencing

May 17, 2018

Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells - substances that can trigger the body's immune response - that differ from person to person. Each year, up to 16 deaths reported to the Federal Drug Administration are attributed to mismatches in red blood cell antigens that are not related to differences in A, B and O blood groups. Currently, no method is available that can determine all blood antigens. But as whole genome sequencing becomes routine for patients, it may be possible to modernize therapy by identifying both rare donors and at-risk recipients before blood transfusions. In a new study, investigators from Brigham and Women's Hospital and Harvard Medical School, as well as from the New York Blood Center have leveraged the MedSeq Project - the first randomized trial of whole genome sequencing in healthy adults - to develop and validate a computer program that can comprehensively and cost-effectively determine differences in individuals' blood types with more than 99 percent accuracy. The team's results are reported in The Lancet Haematology.

"Blood transfusion complications are common in patients needing chronic transfusion, but with current technology it is not cost effective to do blood typing for all antigens," said first author William Lane, MD, PhD, director of Clinical Laboratory Informatics and assistant director of the Tissue Typing Laboratory in the BWH Department of Pathology. "But the algorithm we have developed can be applied to type everyone for all relevant blood groups at a low cost once sequencing is obtained."

Blood transfusions are one of the most common procedures in medicine with more than 11 million units of blood transfused in the U.S. each year. Complications from blood transfusions can be life-threatening. When the body encounters foreign antigens on the donor cells, it can stimulate production of antibodies that can destroy the transfused donor cells. From birth, people have antibodies unique to their ABO blood type, but other antibodies against specific blood antigens can be stimulated during pregnancy from exposure to fetal cells or exposure to donor cells when receiving multiple blood transfusions.

"This approach has the potential to be one of the first routine clinical uses of genomics for medical care for patients needing blood transfusion," said co-first author Connie M. Westhoff, PhD, at the New York Blood Center. "It could prevent serious or even fatal complications because once patients are sensitized they have a life-long risk of hemolytic transfusion reactions if blood transfusion is needed in an emergency."

Today, most testing for blood donors and patients include only ABO and Rh matching, but more than 300 red blood cell antigens and 33 platelet antigens are known. To create a way to cost-effectively type many people for these antigens, Lane teamed up with scientists directing the MedSeq Project and experts in blood group genetics at the New York Blood Center to build a database and develop a computer software algorithm, known as bloodTyper, that could rapidly and accurately predict an individual's blood group antigen profile from genomic sequences. Lane, Westhoff and colleagues validated the software by comparing it to traditional, and more labor-intensive, methods. bloodTyper was more than 99 percent accurate when typing from the MedSeq Project participants' genomes. Lane notes that this work would not have been possible without access to samples from the MedSeq Project, and close collaboration with MedSeq's principal investigator, Robert Green, MD, MPH, and co-investigator, Heidi Rehm, PhD.

"This report demonstrates a previously unanticipated use case and benefit that will accrue as whole genome sequencing become a routine part of medical care," said Green, one of the senior authors on the study, director of the Genomes2People Research Program at BWH and professor of medicine at Harvard Medical School. "Genome sequencing can now identify potential transfusion recipients who need rare blood types and the individuals who can safely provide them."
-end-
Funding for this work was provided through the Clinical Sequencing Exploratory Research Consortium of the National Human Genome Research Institute and National Institutes of Health, Doris Duke Charitable Foundation, NHS Blood and Transplant, National Institute for Health Research, and Wellcome Trust.

The Genomes2People Research Program at Brigham and Women's Hospital, the Broad Institute and Harvard Medical School is directed by Robert C. Green, MD, MPH and conducts empirical research in translational genomics and health outcomes. NIH-funded research within G2P seeks to understand the medical, behavioral and economic impact of using genetic risk information to inform future standards for implementing genomic medicine. The BabySeq Project is recruiting families of both healthy and sick newborns into a randomized clinical trial where half will have their baby's genome sequenced. The MilSeq Project is examining sequencing within the military. The MedSeq Project has conducted the first randomized clinical trial to measure the impact of whole genome sequencing on the practice of medicine. REVEAL Study has conducted several randomized clinical trials examining the impact of disclosing genetic risk for a frightening disease. And the Impact of Personal Genomics (PGen) Study examined the impact of direct-to-consumer genetic testing on over 1000 consumers of two different companies. Visit genomes2people.org for more and follow us on Twitter @Genomes2People.

About New York Blood Center: Founded in 1964, New York Blood Center (NYBC) is a nonprofit organization that is one of the largest independent, community-based blood centers in the world. NYBC, along with its partner organizations Community Blood Center of Kansas City, Missouri (CBC), Innovative Blood Resources (IBR), Blood Bank of Delmarva (BBD), and Rhode Island Blood Center (RIBC), collect approximately 4,000 units of blood products each day and serve local communities of more than 45 million people in the Tri-State area (NY, NJ, CT), Mid Atlantic area (PA, DE, MD), the Kansas City metropolitan area, Minnesota, Nebraska, Rhode Island, and Southern New England. NYBC and its partners also provide a wide array of transfusion-related medical services, including Comprehensive Cell Solutions, the National Center for Blood Group Genomics, the National Cord Blood Program, and the Lindsley F. Kimball Research Institute, which -- among other milestones -- developed the Hepatitis B vaccine and a patented solvent detergent plasma process innovating blood-purification technology worldwide.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits and nearly 46,000 inpatient stays, is the largest birthing center in Massachusetts and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 3,000 researchers, including physician-investigators and renowned biomedical scientists and faculty supported by nearly $666 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Brigham and Women's Hospital

Related Genome Sequencing Articles:

Rare feline genetic disorders identified through whole genome sequencing at MU
In 2009, Joan Coates, a veterinary neurologist, along with other researchers at the University of Missouri and the Broad Institute, found a genetic link between degenerative myelopathy (DM) in dogs and amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease in people.
With cancer genome sequencing, be your own control
University of Colorado Cancer Center study shows that mapping cancer cells to published reference genomes is less accurate than mapping them to genomes of healthy cells from same subject.
Genome sequencing reveals ancient interbreeding between chimpanzees and bonobos
For the first time, scientists have revealed ancient gene mixing between chimpanzees and bonobos, mankind's closest relatives, showing parallels with Neanderthal mixing in human ancestry.
Genome sequencing helps determine end of tuberculosis outbreak
Using genome sequencing, researchers from the University of British Columbia, along with colleagues at the Imperial College in London, now have the ability to determine when a tuberculosis outbreak is over.
How did the giraffe get its long neck? Clues now revealed by new genome sequencing
For the first time, the genomes of the giraffe and its closest living relative, the reclusive okapi of the African rainforest, have been sequenced -- revealing the first clues about the genetic changes that led to the evolution of the giraffe's exceptionally long neck and its record-holding ranking as the world's tallest land species.
Interpreting clinical sequencing results for genome medicine
Medical geneticist Robert C. Green and clinical molecular geneticist Heidi Rehm are available to discuss the best path forward for interpreting results from clinical genome and exome sequencing.
Successful precision medicine will require more accurate genome sequencing
Large areas of medically important genes fall within troublesome regions of the human genome, where it is currently difficult to obtain accurate sequence information, according to research published in the open access journal Genome Medicine.
New software provides an overview of the big data of genome sequencing
Since researchers first succeeded in mapping the human genome back in 2003, the technological development has moved at warp speed, and the process which at that time took several years and billions of dollars can now be performed in a few days.
Sequencing algae's genome may aid biofuel production
University of Washington scientists have sequenced the complete genetic makeup of a species of ecologically important algae, which may aid in biofuel production.
Whole genome-sequencing uncovers new genetic cause for osteoporosis
Using one of the world's most extensive genetics data sets, an international research team led by Dr.

Related Genome Sequencing Reading:

The Gene: An Intimate History
by Siddhartha Mukherjee (Author)

The 1,000 Genome: The Revolution in DNA Sequencing and the New Era of Personalized Medicine
by Kevin Davies (Author)

Next-Generation Sequencing Data Analysis
by Xinkun Wang (Author)

Genetics: Analysis and Principles
by Robert Brooker (Author)

A History of Genetics
by A.H. Sturtevant (Author)

Emery's Elements of Medical Genetics E-Book
by Elsevier

Lewin's GENES XII (Lewins Genes)
by Jones & Bartlett Learning

The Emperor of All Maladies: A Biography of Cancer
by Siddhartha Mukherjee (Author)

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

The Laws of Medicine: Field Notes from an Uncertain Science (TED Books)
by Simon & Schuster/ TED

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...