Nav: Home

Being sick in the morning can be different from being sick at night

May 17, 2019

In a review published May 17 in the journal Trends in Immunology, researchers discuss how time of day affects the severity of afflictions ranging from allergies to heart attacks.

Researchers in Switzerland compiled studies, predominantly in mice, that looked at the connection between circadian rhythms and immune responses. For example, studies showed that adaptive immune responses--in which highly specialized, pathogen-fighting cells develop over weeks--are under circadian control. This is "striking," says senior author Christoph Scheiermann, an immunologist at the University of Geneva, "and should have relevance for clinical applications, from transplants to vaccinations."

The body reacts to cues such as light and hormones to anticipate recurring rhythms of sleep, metabolism, and other physiological processes. In both humans and mice, the numbers of white blood cells also oscillate in a circadian manner, raising the question of whether it might be possible one day to optimize immune response through awareness and utilization of the circadian clock.

In separate studies that compared immune cell time-of-day rhythms under normal conditions, inflammation, and disease, researchers found that:
  • Heart attacks in humans are known to strike most commonly in the morning, and research suggests that morning heart attacks tend to be more severe than at night. In mice, the numbers of monocytes--a type of white blood cell that fights off bacteria, viruses, and fungi--are elevated in the blood during the day. At night, monocytes are elevated in infarcted heart tissue, resulting in decreased cardiac protection at that time of day relative to morning.

  • The ability of immune cells to fight atherosclerotic plaques can depend on CCR2--a chemokine protein linked to immune function and inflammation. CCR2 exhibits a daily rhythm in mice, peaking in the morning, and based on its influence on immune cells, can be followed to understand white blood cell behaviors in mouse models of atherosclerosis.

  • Parasite infections are time-of-day dependent. Mice infected with the gastrointestinal parasite Trichuris muris in the morning have been able to kill worms significantly faster than mice infected in the evening.

  • A bacterial toxin tied to pneumonia initiates an inflammatory response in the lungs of mice. Recruitment of immune cells during lung inflammation displays a circadian oscillation pattern. Separately, more monocytes can be recruited into the peritoneal cavity, spleen, and liver in the afternoon, thus resulting in enhanced bacterial clearance at that time.

  • Allergic symptoms follow a time-of-day dependent rhythmicity, generally worse between midnight and early morning. Hence, the molecular clock can physiologically drive innate immune cell recruitment and the outcomes of asthma in humans, or airway inflammation in mice--the review notes.
"Investigating circadian rhythms in innate and adaptive immunity is a great tool to generally understand the physiological interplay and time-dependent succession of events in generating immune responses," Scheiermann says. "The challenge lies in how to channel our growing mechanistic understanding of circadian immunology into time-tailored therapies for human patients."
-end-
This work was supported by the German Research Foundation, the European Research Council, and the Swiss National Science Foundation.

Trends in Immunology, Pick and He et al.: "Time-of-Day-Dependent Trafficking andFunction of Leukocyte Subsets" https://www.cell.com/trends/immunology/fulltext/S1471-4906(19)30074-2

Trends in Immunology (@TrendsImmuno), published by Cell Press, is a monthly review journal that plays an essential role in monitoring advances in the various fields of immunology, bringing together developments in basic and clinical immunology in a readable and lucid form. Visit: http://www.cell.com/trends/immunology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Immune Cells Articles:

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.