Nav: Home

Polymers jump through hoops on pathway to sustainable materials

May 17, 2019

CHAMPAIGN, Ill. -- Recyclable plastics that contain ring-shaped polymers may be a key to developing sustainable synthetic materials. Despite some promising advances, researchers said, a full understanding of how to processes ring polymers into practical materials remains elusive. In a new study, researchers identified a mechanism called "threading" that takes place when a polymer is stretched - a behavior not witnessed before. This new insight may lead to new processing methods for sustainable polymer materials.

Most consumer plastics are blends of linear polymers. The concept of plastics made purely from ring polymers - molecules that form a closed ring - presents an enticing opportunity for sustainability, as shown by the Autonomous Materials Systems group at the Beckman Institute for Advanced Science and Technology. Once a single bond holding ring polymers together breaks, the entire molecule falls apart, leading to disintegration on demand. However, processing such polymers into practical materials remains a challenge, the researchers said.

A 2013 University of Illinois-led study showed that ring polymers could be broken with heat, but this comes at a price - the resulting plastics would likely become unstable and begin to break down prematurely.

In the new study, U. of I. researchers Charles Schroeder and Yuecheng (Peter) Zhou examine the flow dynamics of DNA-based ring and linear polymer solutions to tease out clues about how synthetic polymers interact during processing. Their findings are published in the journal Nature Communications.

"We lack a fundamental understanding of how ring polymers stretch and move in flow while navigating around other neighbor polymer chains. This work allowed us to probe these questions at a molecular level," said Schroeder, a chemical and biomolecular engineering professor, Beckman Institute researcher and study co-author.

In Schroeder's lab, the researchers stretch and squeeze polymers, causing them to flow and allowing direct observation of the behavior of individual molecules using single-molecule fluorescence microscopy.

"There is a fluctuation in the shape of the ring polymers and this depends on the concentration of linear polymers in the solution," said Zhou, a graduate student, Beckman Institute researcher and lead author of the study. "We do not see this behavior in pure solutions of ring or linear polymers, so this tells us that something unique is happening in mixed solutions."

Using a combination of direct single-molecule observations and physical measurements, the team concluded that the changes in shape of the ring polymers occur because linear molecules thread themselves through the ring molecules when stressed, causing the ring shape to fluctuate under fluid flow.

"We observed this behavior even when there is a very low concentration of linear polymers in the mix," Zhou said. "This suggests that it only takes a very minute level of contamination to cause this phenomenon."

This threading of linear polymers through ring polymers during stress is something that had been theorized before, using bulk-scale studies of the physical properties, but now it has been observed at the molecular scale, the researchers said.

"Bulk studies typically mask the importance of what is going on at the smaller scale," Schroeder said.

How these observations will translate into further development of sustainable consumer plastics remains unclear, the researchers said. However, any insight into the fundamental molecular properties of mixed-polymer solutions is a step in the right direction.

"To make pure ring polymer plastics a reality, we need to understand both mixed and pure solutions at a fundamental level," Schroeder said. "Once we can figure out how they work, then we can move on to synthesizing them and ultimately how to use them in sustainable consumer plastics."
-end-
Former U. of I. graduate student Kai-Wen Hsiao, Kathryn E. Regan and Rae M. Robertson-Anderson, of the University of San Diego, and Dejie Kong and Gregory B. McKenna, of Texas Tech University, contributed to this study.

The National Science Foundation supported this research.

Editor's notes:

To reach Charles Schroeder, email cms@illinois.edu.
To reach Peter Zhou, email zhou62@illinois.edu.

The paper "Effect of molecular architecture on ring polymer dynamics in semidilute linear polymer solutions" is available online and from the U. of I. News Bureau. DOI: 10.1038/s41467-019-09627-7

University of Illinois at Urbana-Champaign, News Bureau

Related Behavior Articles:

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.
Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.
AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.
Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.
Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.
Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.
Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.
Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
More Behavior News and Behavior Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.