Nav: Home

Manipulating atoms one at a time with an electron beam

May 17, 2019

CAMBRIDGE, MA -- The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.

Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron beam and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of "atomic engineering," they say.

The advance is described today in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.

"We're using a lot of the tools of nanotechnology," explains Li, who holds a joint appointment in materials science and engineering. But in the new research, those tools are being used to control processes that are yet an order of magnitude smaller. "The goal is to control one to a few hundred atoms, to control their positions, control their charge state, and control their electronic and nuclear spin states," he says.

While others have previously manipulated the positions of individual atoms, even creating a neat circle of atoms on a surface, that process involved picking up individual atoms on the needle-like tip of a scanning tunneling microscope and then dropping them in position, a relatively slow mechanical process. The new process manipulates atoms using a relativistic electron beam in a scanning transmission electron microscope (STEM), so it can be fully electronically controlled by magnetic lenses and requires no mechanical moving parts. That makes the process potentially much faster, and thus could lead to practical applications.

Using electronic controls and artificial intelligence, "we think we can eventually manipulate atoms at microsecond timescales," Li says. "That's many orders of magnitude faster than we can manipulate them now with mechanical probes. Also, it should be possible to have many electron beams working simultaneously on the same piece of material."

"This is an exciting new paradigm for atom manipulation," Susi says.

Computer chips are typically made by "doping" a silicon crystal with other atoms needed to confer specific electrical properties, thus creating "defects' in the material -- regions that do not preserve the perfectly orderly crystalline structure of the silicon. But that process is scattershot, Li explains, so there's no way of controlling with atomic precision where those dopant atoms go. The new system allows for exact positioning, he says.

The same electron beam can be used for knocking an atom both out of one position and into another, and then "reading" the new position to verify that the atom ended up where it was meant to, Li says. While the positioning is essentially determined by probabilities and is not 100 percent accurate, the ability to determine the actual position makes it possible to select out only those that ended up in the right configuration.

Atomic soccer

The power of the very narrowly focused electron beam, about as wide as an atom, knocks an atom out of its position, and by selecting the exact angle of the beam, the researchers can determine where it is most likely to end up. "We want to use the beam to knock out atoms and essentially to play atomic soccer," dribbling the atoms across the graphene field to their intended "goal" position, he says.

"Like soccer, it's not deterministic, but you can control the probabilities," he says. "Like soccer, you're always trying to move toward the goal."

In the team's experiments, they primarily used phosphorus atoms, a commonly used dopant, in a sheet of graphene, a two-dimensional sheet of carbon atoms arranged in a honeycomb pattern. The phosphorus atoms end up substituting for carbon atoms in parts of that pattern, thus altering the material's electronic, optical, and other properties in ways that can be predicted if the positions of those atoms are known.

Ultimately, the goal is to move multiple atoms in complex ways. "We hope to use the electron beam to basically move these dopants, so we could make a pyramid, or some defect complex, where we can state precisely where each atom sits," Li says.

This is the first time electronically distinct dopant atoms have been manipulated in graphene. "Although we've worked with silicon impurities before, phosphorus is both potentially more interesting for its electrical and magnetic properties, but as we've now discovered, also behaves in surprisingly different ways. Each element may hold new surprises and possibilities," Susi adds.

The system requires precise control of the beam angle and energy. "Sometimes we have unwanted outcomes if we're not careful," he says. For example, sometimes a carbon atom that was intended to stay in position "just leaves," and sometimes the phosphorus atom gets locked into position in the lattice, and "then no matter how we change the beam angle, we cannot affect its position. We have to find another ball."

Theoretical framework

In addition to detailed experimental testing and observation of the effects of different angles and positions of the beams and graphene, the team also devised a theoretical basis to predict the effects, called primary knock-on space formalism, that tracks the momentum of the "soccer ball." "We did these experiments and also gave a theoretical framework on how to control this process," Li says.

The cascade of effects that results from the initial beam takes place over multiple time scales, Li says, which made the observations and analysis tricky to carry out. The actual initial collision of the relativistic electron (moving at about 45 percent of the speed of light) with an atom takes place on a scale of zeptoseconds -- trillionths of a billionth of a second -- but the resulting movement and collisions of atoms in the lattice unfolds over time scales of picoseconds or longer -- billions of times longer.

Dopant atoms such as phosphorus have a nonzero nuclear spin, which is a key property needed for quantum-based devices because that spin state is easily affected by elements of its environment such as magnetic fields. So the ability to place these atoms precisely, in terms of both position and bonding, could be a key step toward developing quantum information processing or sensing devices, Li says.
-end-
Besides the leading MIT team, the international collaboration included researchers from the University of Vienna, the University of Chinese Academy of Sciences, Aarhus University in Denmark, National Polytechnical School in Ecuador, Oak Ridge National Laboratory, and Sichuan University in China. The work was supported by the National Science Foundation, the U.S. Army Research Office through MIT's Institute for Soldier Nanotechnologies, the Austrian Science Fund, the European Research Council, the Danish Council for Independent Research, the Chinese Academy of Sciences, and the U.S. Department of Energy.

Massachusetts Institute of Technology

Related Graphene Articles:

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.