Eavesdropping crickets drop from the sky to evade capture by bats

May 17, 2020

Researchers have uncovered the highly efficient strategy used by a group of crickets to distinguish the calls of predatory bats from the incessant noises of the nocturnal jungle. The findings, led by scientists at the Universities of Bristol and Graz in Austria and published in Philosophical Transactions of the Royal Society B, reveal the crickets eavesdrop on the vocalisations of bats to help them escape their grasp when hunted.

Sword-tailed crickets of Barro Colorado Island, Panama, are quite unlike many of their nocturnal, flying-insect neighbours. Instead of employing a variety of responses to bat calls of varying amplitudes, these crickets simply stop in mid-air, effectively dive-bombing out of harm's way. The higher the bat call amplitude, the longer they cease flight and further they fall. Biologists from Bristol's School of Biological Sciences and Graz's Inst of Zoology discovered why these crickets evolved significantly higher response thresholds than other eared insects.

Within the plethora of jungle sounds, it is important to distinguish possible threats. This is complicated by the cacophony of katydid (bush-cricket) calls, which are acoustically similar to bat calls and form 98 per cent of high-frequency background noise in a nocturnal rainforest. Consequently, sword-tailed crickets need to employ a reliable method to distinguish between calls of predatory bats and harmless katydids.

Responding only to ultrasonic calls above a high-amplitude threshold is their solution to this evolutionary challenge. Firstly, it allows the crickets to completely avoid accidentally responding to katydids. Secondly, they do not respond to all bat calls but only sufficiently loud ones, which indicates the bat is within seven metres of the insect. This is the exact distance at which a bat can detect the echo of the crickets, which ensures the crickets only respond to bats that have already detected them when trying to evade capture.

This type of approach is rare in nature with most other eavesdropping insects living in less noisy environments being able to rely on differences in call patterns to distinguish bat predators.

Dr Marc Holderied, senior author on the study from Bristol's School of Biological Sciences, explained: "The beauty of this simple avoidance rule is how the crickets respond at call amplitudes that exactly match the distance over which bats would detect them anyway -- in their noisy world it pays to only respond when it really counts."
The study was supported by the Austrian Science Foundation and Leverhulme Trust.

University of Bristol

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.