Hebrew University researchers succeed in observing for 1st time how DNA damage is identified

May 18, 2006

For the first time anywhere, researchers at the Hebrew University of Jerusalem have succeeded in observing and describing how damaged DNA is naturally identified.

The research sheds new light on understanding this molecular mechanism and is likely to aid in research on diseases involving DNA damage, including cancer.

An article regarding the work of the Hebrew University researchers appears in the current issue of the scientific journal Cell.

The researchers, headed by Dr. Sigal Ben-Yehuda of the Department of Molecular Biology at the Hebrew University-Hadassah Medical School, revealed a new protein which scans DNA at the onset of bacterial sporulation. The protein moves quickly along the chromosome and identifies DNA damage. When the protein identifies such damage, it halts at that spot and signals to other proteins which repair DNA.

Under conditions of stress, some bacteria undergo a process of division which produces spores. These spores are particularly resistant to conditions of heat, radiation, dryness and exposure to chemicals, making it difficult to eradicate them with conventional methods, such as antibiotic drugs.

Most of the knowledge about sporulation of bacteria has been gathered over the years on a bacterium known as Bacillus subtilis, a bacterium which does not cause any illnesses. When this bacterium enters the sporulation phase, it verifies that the DNA sequence is in proper order and does not contain any mutations. But the process of how this occurs has not been observed until now.

"For the first time it is now possible to see how this phenomenon occurs," said Dr. Ben-Yehuda. "Proteins triggered by the bacteria that are similar to the protein that has been revealed in our laboratory are found in all species, including humans, and therefore one can conclude that the way in which the bacterial protein scans the DNA for lesions is similar among many forms of life.

"This understanding of the molecular basis of the DNA repair is a basic step in furthering our ability to understand those illnesses stemming from DNA damage, for example cancerous growths. "
-end-


The Hebrew University of Jerusalem

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.