Researchers make progress engineering digestive system tissues

May 18, 2015

WINSTON-SALEM, N.C. - May 18, 2015 - New proof-of-concept research at Wake Forest Institute for Regenerative Medicine suggests the potential for engineering replacement intestine tissue in the lab, a treatment that could be applied to infants born with a short bowel and adults having large pieces of gut removed due to cancer or inflammatory bowel disease.

Lead researcher Khalil N Bitar, Ph.D., a professor at the institute, which is part of Wake Forest Baptist Medical Center, reported the results this week at Digestive Diseases Week in Washington, D.C. He also updated attendees on a related project to engineer anal sphincters for patients with fecal incontinence.

"Results from both projects are promising and exciting," said Bitar. "Our latest effort, to find a new solution for the urgent need for gut-lengthening procedures, shows we can meet the basic requirements for regenerating segments of the gastrointestinal tract."

Both projects are based on using a patient's own cells to grow replacement tissue in the lab. Elie Zakhem, a doctoral student in Bitar's lab, is currently working on developing tissue-engineered gut replacements. The researchers use smooth muscle and nerve stem cells from human intestine to engineer innervated muscle "sheets." The sheets are then wrapped around tubular chitosan scaffolds. Chitosan is a natural biomaterial derived from shrimp shells. The material is already approved by the U.S. Food and Drug Administration for certain applications.

The tubular structures were implanted just under the skin of rats for 14 days, a first step in assessing their performance. Researchers found that the implants developed a blood vessel supply and that the tube opening was maintained. In addition, the innervated muscle "remodeled," which means that the cells began the process of releasing their own materials to replace the scaffold.

"It is the combination of smooth muscle and neural cells in gut tissue that moves digested food material through the gastrointestinal tract and this has been a major challenge in efforts to build replacement tissue," said Bitar. "Our preliminary results demonstrate that these cells maintained their function and the implant became vascularized, providing proof of concept that regenerating segments of the gastrointestinal tract is achievable."

The researchers' next steps are to develop the lining of the intestine that is responsible for absorption and secretion. In a study involving research animals, they also plan to surgically connect the replacement segments to native intestine to assess function.

The group's second project, to engineer anal sphincters, also reached a new milestone with the successful implantation of the structures in rabbits.

"These bioengineered sphincters, made with both muscle and nerve cells, restored fecal continence in the animals throughout the six-month follow-up period after implantation," he said. "This provides proof of concept of the safety and efficacy of these constructs."

Sphincters are ring-like muscles that maintain constriction of a body passage, such as controlling the release of urine and feces. There are actually two sphincters at the anus - one internal and one external. A large proportion of fecal incontinence in humans is the result of a weakened internal sphincter.

"Many individuals find themselves withdrawing from their social lives and attempting to hide the problem from their families, friends and even their doctors," said Bitar. "Many people suffer without little help."

To engineer the internal anal sphincters, researchers used a small biopsy from the animals' sphincter tissue and isolated smooth muscle cells that were then multiplied in the lab. In a ring-shaped mold, these cells were layered with nerve cells isolated from small intestine to build the sphincter. The mold was placed in an incubator, allowing for tissue formation. The entire process took about four to six weeks.

The bioengineered sphincters mimicked the architecture and function of native tissue and there are no signs of inflammation or infection after implantation. The constructs demonstrated the presence of contractile smooth muscle as well as mature nerve-cell populations.

"In essence, we have built a replacement sphincter that we hope can one day benefit human patients," said Bitar. "Because these sphincters are made with both muscle and nerve cells, they are 'pre-wired' to be connected with nerve pathways in the intestine."

Bitar's goal is to eventually conduct studies of the technology in humans. He said the technology could be applied to other diseases of the sphincter muscles, including urinary incontinence.
Media Contacts: Karen Richardson,, (336) 716-4453 or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a nationally recognized academic medical center in Winston-Salem, North Carolina, with an integrated enterprise including educational and research facilities, hospitals, clinics, diagnostic centers and other primary and specialty care facilities serving 24 counties in northwest North Carolina and southwest Virginia. Its divisions are Wake Forest Baptist Health, a regional clinical system with close to 175 locations, 900 physicians and 1,000 acute care beds; Wake Forest School of Medicine, an established leader in medical education and research; and Wake Forest Innovations, which accelerates the commercialization of research discoveries and specialized research capabilities of Wake Forest Baptist Medical Center and operates Wake Forest Innovation Quarter, an urban district for research, business and education. Wake Forest Baptist clinical, research and educational programs are annually ranked among the best in the country by U.S. News & World Report.

Wake Forest Baptist Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to