Nav: Home

New Berkeley Lab study tallies environmental and public health benefits of solar power

May 18, 2016

Berkeley, CA -- Solar power could deliver $400 billion in environmental and public health benefits throughout the United States by 2050, according to a study from the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and National Renewable Energy Laboratory (NREL).

"We find that a U.S. electric system in which solar plays a major role--supplying 14% of demand in 2030, and 27% in 2050--would result in enduring environmental and health benefits. Moreover, we find that the existing fleet of solar plants is already offering a down-payment towards those benefits, and that there are sizable regional differences in the benefits," said Ryan Wiser of Berkeley Lab's Energy Technologies Area.

The total monetary value of the greenhouse-gas and air pollution benefits of the high-penetration solar scenario exceeds $400 billion in present-value terms under central assumptions. Focusing on the existing end-of-2014 fleet of solar power projects, recent annual benefits equal more than $1.5 billion under central assumptions.

The report, The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States, may be downloaded here. The report is part of a series of papers published as part of the U.S. Department of Energy's On the Path to SunShot study. The DOE launched the SunShot Initiative in 2011, with the goal of driving down the cost of solar energy so that it was cost-competitive with other forms of electricity by the end of the decade. The new reports take stock of the progress already made, and highlight various barriers and opportunities that remain to achieving SunShot-level cost reductions. The full set of reports, including two others involving Berkeley Lab, can be found here.

The SunShot Initiative aims to lower the installed cost of solar by 75% between 2010 and 2020. In their SunShot Vision Study, published in 2012, DOE found that meeting SunShot's low-cost solar goal could result in solar supplying 14% of U.S. electricity demand by 2030 and 27% by 2050.

The new study follows up on that work by evaluating the greenhouse-gas (GHG) emissions reductions, air-pollution health and environmental impacts, and water-use reductions from large amounts of solar. As Trieu Mai from NREL explains, "This study augments the original DOE report by attaching specific numbers to the benefits of solar energy. It also assesses the benefits already being delivered by the existing fleet of solar projects. Importantly, we take great care to describe our methods and highlight underlying uncertainties."

Benefits of the Existing Fleet of Solar Projects

The study finds that the 20 gigawatts (GW) of solar installed as of the end of 2014 is already lowering annual GHGs by 17 million metric tons, worth about $700 million per year if valued with a central estimate of the "social cost of carbon" - the Obama Administration's estimate of the long-term damage done by one ton of carbon emissions. Over half of these benefits come from emissions reductions in California.

Solar is also reducing conventional air pollutants from power plants - sulfur, nitrogen, and particulates - and the corresponding health benefits are greatest in the eastern United States. Overall, the health and environmental benefits of this pollution reduction are worth an estimated $890 million from avoiding premature mortality and a range of other negative health outcomes. "The East has more coal-fired power generation than the rest of the country, and therefore sees greater benefits in reducing conventional pollutants," explained Wiser, the lead author of the study.

Benefits from a High-Penetration Solar Energy Future

Looking further ahead, with solar growing to 14% of demand by 2030 and 27% by 2050, the study finds GHG reductions of 13% in 2030 and 18% in 2050, compared to a scenario of no new solar. These emission reductions are worth about $259 billion in reduced global climate damages based on central estimates, or 2.2 cents per kWh of solar.

Hitting SunShot goals is also found to reduce sulfur, nitrogen, and particulate emissions, delivering $167 billion in health and environmental benefits, or 1.4 cents per kWh of solar, again based on central estimates. The most notable benefit comes from reducing premature mortality from sulfate particles. Achieving the SunShot Vision scenario reduces premature mortalities by between 25,000 and 59,000 lives, based on methods developed by the U.S. Environmental Protection Agency.

Lastly, solar power reduces water use by power plants. Relative to the baseline scenario, achieving the SunShot Vision scenario reduces power-sector water withdrawals by 8% in 2030 and 5% in 2050, while water consumption is reduced by 10% in 2030 and 16% in 2050. Importantly, states that are sunny, but drought-prone and arid like California and Texas, are among those with the largest reductions in water use.

The research was supported by funding from the U.S. Department of Energy SunShot Initiative.
-end-
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The SunShot Initiative is a collaborative national effort that aggressively drives innovation to make solar energy fully cost-competitive with traditional energy sources before the end of the decade. Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour. Learn more at energy.gov/sunshot.

DOE/Lawrence Berkeley National Laboratory

Related Solar Energy Articles:

Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
20 overlooked benefits of distributed solar energy
A study released today provides the most complete list yet of the advantages of solar energy -- from carbon sequestration to improvements for pollinator habitat.
Window film could even out the indoor temperature using solar energy
A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening.
Danish researchers create worldwide solar energy model
For any future sustainable energy system, it is crucial to know the performance of photovoltaic (solar cell) systems at local, regional and global levels.
Breakthrough in new material to harness solar power could transform energy
The UToledo physicist pushing the performance of solar cells to levels never before reached made a significant breakthrough in the chemical formula and process to make the new material.
Novel thermoelectric nanoantenna design for use in solar energy harvesting
In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy.
Improving the lifetime of bioelectrodes for solar energy conversion
The use of proteins involved in the photosynthetic process enables the development of affordable and efficient devices for energy conversion.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
Racial inequality in the deployment of rooftop solar energy in the US
Although the popularity of rooftop solar panels has skyrocketed because of their benefits to consumers and the environment, the deployment has predominantly occurred in white neighborhoods, even after controlling for household income and home ownership, according to a study by researchers from Tufts University and the University of California, Berkeley, published today in the journal Nature Sustainability.
More Solar Energy News and Solar Energy Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.