Nav: Home

Bending hot molecules

May 18, 2016

Hot molecules, which are found in extreme environments such as the edges of fusion reactors, are much more reactive than those used to understand reaction studies at ambient temperature. Detailed knowledge of their reactions is not only relevant to modelling nuclear fusion devices; it is also crucial in simulating the reaction that takes place on a spacecraft's heat shield at the moment when it re-enters Earth's atmosphere. Further, it can help us understand the physics and chemistry of planetary atmospheres. In a novel and comprehensive study just published in EPJ D, Masamitsu Hoshino from Sophia University, Tokyo, Japan, and colleagues reveal a method for controlling the likelihood that these reactions between electrons and hot molecules occur, by altering the degree of bending the linear molecules, modulated by reaching precisely defined temperatures.

In this new study, the authors chiefly rely on the new method of producing hot molecules with a sufficient number density and in a stable manner. It is used to predict the likelihood of an interaction between electrons and two types of hot molecules, namely carbonyl sulphide (COS) and carbon dioxide (CO2).

Specifically, their aim is to better understand how hot molecules enter so-called 'resonance' regimes, as they can collide with electrons at a specific speed, entering a state of resonance with the relevant properties of the molecules at the quantum level.

To do so, the authors investigated how vibrational excitation and de-excitation for COS and CO2 vary for different degrees of bending, that is, at different temperatures. The team found that, for both molecules, the resonant energy position decreases as the initial vibrational quantum - which indicates the degree of bending - increases. By contrast, the likelihood of an interaction increases for COS and decreases for CO2 as the initial vibrational quantum increases.
-end-
Reference:

M. Hoshino, Y. Ishijima, H. Kato, D. Mogi, Y. Takahashi, K. Fukae, P. Limão-Vieira, H. Tanaka, and I. Shimamura (2016), Change in resonance parameters of a linear molecule as it bends: Evidence in electron-impact vibrational transitions of hot COS and CO2 molecules, Eur. Phys. J. D 70:100, DOI 10.1140/epjd/e2015-70085-9

Springer

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
More Electrons News and Electrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.