Nav: Home

First evidence of icy comets orbiting a sun-like star

May 18, 2016

An international team of astronomers have found evidence of ice and comets orbiting a nearby sun-like star, which could give a glimpse into how our own solar system developed.

Using data from the Atacama Large Millimeter Array (ALMA), the researchers, led by the University of Cambridge, detected very low levels of carbon monoxide gas around the star, in amounts that are consistent with the comets in our own solar system.

The results, which will be presented today at the 'Resolving Planet Formation in the era of ALMA and extreme AO' conference in Santiago, Chile, are a first step in establishing the properties of comet clouds around sun-like stars just after the time of their birth.

Comets are essentially 'dirty snowballs' of ice and rock, sometimes with a tail of dust and evaporating ice trailing behind them, and are formed early in the development of stellar systems. They are typically found in the outer reaches of our solar system, but become most clearly visible when they visit the inner regions. For example, Halley's Comet visits the inner solar system every 75 years, some take as long as 100,000 years between visits, and others only visit once before being thrown out into interstellar space.

It's believed that when our solar system was first formed, the Earth was a rocky wasteland, similar to how Mars is today, and that as comets collided with the young planet, they brought many elements and compounds, including water, along with them.

The star in this study, HD 181327, has a mass about 30% greater than the sun and is located 160 light years away in the Painter constellation. The system is about 23 million years old, whereas our solar system is 4.6 billion years old.

"Young systems such as this one are very active, with comets and asteroids slamming into each other and into planets," said Sebastián Marino, a PhD student from Cambridge's Institute of Astronomy and the paper's lead author. "The system has a similar ice composition to our own, so it's a good one to study in order to learn what our solar system looked like early in its existence."

Using ALMA, the astronomers observed the star, which is surrounded by a ring of dust caused by the collisions of comets, asteroids and other bodies. It's likely that this star has planets in orbit around it, but they are impossible to detect using current telescopes.

"Assuming there are planets orbiting this star, they would likely have already formed, but the only way to see them would be through direct imaging, which at the moment can only be used for very large planets like Jupiter," said co-author Luca Matrà, also a PhD student at Cambridge's Institute of Astronomy.

In order to detect the possible presence of comets, the researchers used ALMA to search for signatures of gas, since the same collisions which caused the dust ring to form should also cause the release of gas. Until now, such gas has only been detected around a few stars, all substantially more massive than the sun. Using simulations to model the composition of the system, they were able to increase the signal to noise ratio in the ALMA data, and detect very low levels of carbon monoxide gas.

"This is the lowest gas concentration ever detected in a belt of asteroids and comets -- we're really pushing ALMA to its limits," said Marino.

"The amount of gas we detected is analogous to a 200 kilometre diameter ice ball, which is impressive considering how far away the star is," said Matrà. "It's amazing that we can do this with exoplanetary systems now."

The results have been accepted for publication in the Monthly Notices of the Royal Astronomical Society.

University of Cambridge

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.