Nav: Home

NASA mission uncovers a dance of electrons in space

May 18, 2017

You can't see them, but swarms of electrons are buzzing through the magnetic environment -- the magnetosphere -- around Earth. The electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields. When they penetrate into the magnetosphere close enough to Earth, the high-energy electrons can damage satellites in orbit and trigger auroras. Scientists with NASA's Magnetospheric Multiscale, or MMS, mission study the electrons' dynamics to better understand their behavior. A new study, published in Journal of Geophysical Research revealed a bizarre new type of motion exhibited by these electrons.

Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go free style -- bouncing and wagging back and forth in a type of movement called Speiser motion. New MMS results show for the first time what happens in an intermediate strength field. Then these electrons dance a hybrid, meandering motion -- spiraling and bouncing about before being ejected from the region. This motion takes away some of the field's energy and it plays a key role in magnetic reconnection, a dynamic process, which can explosively release large amounts of stored magnetic energy.

"MMS is showing us the fascinating reality of magnetic reconnection happening out there," said Li-Jen Chen, lead author of the study and MMS scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

As MMS flew around Earth, it passed through an area of a moderate strength magnetic field where electric currents run in the same direction as the magnetic field. Such areas are known as intermediate guide fields. While inside the region, the instruments recorded a curious interaction of electrons with the current sheet, the thin layer through which the current travels. As the incoming particles encountered the region, they started gyrating in spirals along the guide field, like they do in a strong magnetic field, but in larger spirals. The MMS observations also saw signatures of the particles gaining energy from the electric field. Before long, the accelerated particles escaped the current sheet, forming high-speed jets. In the process, they took away some of the field's energy, causing it to gradually weaken.

The magnetic field environment where the electrons' motions were observed was uniquely created by magnetic reconnection, which caused the current sheet to be tightly confined by bunched-up magnetic fields. The new results help the scientists better understand the role of electrons in reconnection and how magnetic fields lose energy.

MMS measures the electric and magnetic fields it flies through, and counts electrons and ions to measure their energies and directions of motion. With four spacecraft flying in a compact, pyramid formation, MMS is able to see the fields and particles in three dimensions and look at small-scale particle dynamics, in a way never before achieved.

"The time resolution of MMS is one hundred times faster than previous missions," said Tom Moore, senior project scientist for MMS at NASA's Goddard Space Flight Center. "That means we can finally see what's going on in such narrow layers and will be able to better predict how fast reconnection occurs in various circumstances."

Understanding the speed of reconnection is essential for predicting the intensity of the explosive energy release. Reconnection is an important energy release process across the universe and is thought to be responsible for some shock waves and cosmic rays. Solar flares on the sun, which can trigger space weather, are also caused by magnetic reconnection.

With two years under its belt, MMS has been revealing new and surprising phenomena near Earth. These discoveries enable us to better understand Earth's dynamic space environment and how it affects our satellites and technology.

MMS is now heading to a new orbit which will take it through magnetic reconnection areas on the side of Earth farther from the sun. In this region, the guide field is typically weaker, so MMS may see more of these types of electron dynamics.
-end-


NASA/Goddard Space Flight Center

Related Magnetic Field Articles:

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.