Nav: Home

Scientists describe origins of topographic relief on Titan

May 18, 2017

Fluid erosion has carved river networks in at least three bodies in our solar system in the form of water on Earth and Mars and liquid hydrocarbons on Titan. A new report in Science examines the global drainage patterns of these worlds to shed light on their geologic past.

Titan's landscapes look similar to Earth's in many ways. But is this similarity only superficial? Scientists from CUNY, MIT, and other institutions have found that the origins of topography on Titan - and Mars - are quite different from on Earth. River networks give us a window into the history of each world. Most topography on Earth is the result of plate tectonics, which builds mountain ranges that jut up and shunt aside rivers as they flow towards the oceans. No one knows for sure what built the topography on Titan, but the scientists discovered that the rivers there have not suffered similar diversions as on Earth. This provides evidence that the history of topography on Titan is more like that of Mars, which did not have plate tectonics, and where the largest scale topography was set very early after Mars' formation.

Dr. Benjamin Black, lead author and Assistant Professor of Earth and Atmospheric Science at City College and of Earth and Environmental Sciences at The Graduate Center, City University of New York (CUNY), and his team used mapping, analysis of spacecraft data, and numerical modeling to glean clues from river networks. "What we can see of Titan's surface looks tantalizingly familiar, at least at first glance. But we know very little about Titan's past," said Dr. Black. "On Earth, the upheaval of plate tectonics diverts rivers. When we compared river patterns on Earth with those on Mars and Titan, we found substantial differences, suggesting Mars and Titan grow their topography in distinctly un-Earth-like fashion. You could say that the history of each world is written in its rivers."

Since the validation of plate-tectonic theory in the 1960s, researchers have wondered what Earth's surface would look like if our planet did not have plate tectonics. "One of the exciting things about this study is that it provides evidence that Earth's topography is quantitatively different from that of Mars and Titan, two planetary bodies without plate tectonics," said Dr. Ken Ferrier, Assistant Professor of Earth and Atmospheric Sciences at Georgia Tech. "This evidence is encoded in river channel networks, which the authors suggest harbor a heretofore unrecognized signature of plate tectonics."

Dr. Black and his colleagues suggest that the river networks of Earth, Mars, and Titan could serve as a Rosetta stone to help scientists decode the impact of tectonics on topography.
-end-
The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adults, continuing and professional education students. 

For more information, please contact Shante Booker (shante.booker@cuny.edu) or visit http://www.cuny.edu/research?

The City University of New York

Related Mars Articles:

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
Mars: Not as dry as it seems
Two new Oxford University papers have shed light on why there is no life on Mars.
More evidence of water on Mars
River deposits exist across the surface of Mars and record a surface environment from over 3.5 billion years ago that was able to support liquid water at the surface.
How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.