Nav: Home

Using seaweed to kill invasive ants

May 18, 2017

RIVERSIDE, Calif. -- Scientists at the University of California, Riverside have developed an inexpensive, biodegradable, seaweed-based ant bait that can help homeowners and farmers control invasive Argentine ant populations.

The researchers found the "hydrogel" baits, which look like liquid gel pills but have a jello-like consistency, reduced ant populations 40 to 68 percent after four weeks. After a second treatment, between weeks four and five, ant population reductions were maintained at 61 to 79 percent until the experiment ended after eight weeks.

"A 70 percent reduction is really successful, especially considering we are not spraying an insecticide but instead using a very targeted method that is better for the environment," said Dong-Hwan Choe, an assistant professor of entomology at UC Riverside and an assistant cooperative extension specialist. "With 70 percent control, homeowners really don't see any ants."

Jia-Wei Tay, a post-doctoral scholar in Choe's lab, is the lead author of the paper. Co-authors are Choe; Mark Hoddle, an entomologist at UC Riverside; and Ashok Mulchandani, a distinguished professor of chemical and environmental engineering.

In addition to the applications for homeowners in an urban environment, which was the focus of this paper, the hydrogels have applications in agriculture, including in citrus groves and grape vineyards.

For example, the Asian citrus psyllid has decimated citrus trees in Asia, South America, Florida and now threatens California's citrus industry. To combat the bug in California, Hoddle coordinated the release of wasps that are native to Pakistan and a natural enemy of the Asian citrus psyllid. Unexpectedly, Hoddle found Argentine ants were killing the wasps.

This summer, the team will coordinate research in citrus groves in southern California. The team wants to measure the effectiveness of hydrogels in controlling Argentine ant populations. If the hydrogel baits can control the ants, the wasps can do their job protecting citrus trees from Asian citrus psyllid, which transmit Huanglongbing, a bacterial disease that kills citrus trees.

The Argentine ant is an invasive species with a worldwide distribution. It is a major nuisance in southern states including Georgia, South Carolina, Alabama, Mississippi, Louisiana, Florida, Tennessee, and North Carolina, and also in California. In fact, a 2007 survey found that 85 percent of all urban pest control services in California were focused on the Argentine ant.

A common method for managing the Argentine ant has been insecticide sprays. However, the downside of this tactic is that the insecticides can harm non-target organisms that do beneficial things. The misuse of the pesticide sprays can also cause environmental contamination.

As a result of these downsides, research has focused on liquid baits that use a combination of sugar water (to attract the ants) and a small amount of toxicant to kill the ants. The problem with the liquid baits is that they need to be dispensed in bait stations, which are costly to maintain.

"Hydrogels eliminate the need for the bait stations. The hydrogels are applied on the ground where the ants forage. Once an ant finds the hydrogel, it drinks from the surface of it. It then goes back to its nest and shares the toxic liquid with nest mates. The ants also create a trail to the hydrogels that their nest mates will follow," Tay said. The hydrogels are designed to be slow-acting, so it takes several days before the ants die. By that time tens of thousands will have ingested the liquid bait.

The hydrogels created by the team are highly absorbent - the material used is similar to what is used in diapers. They retain water so that they will remain attractive to ants for an extended amount of time.

The researchers used sugar water containing 0.0001 percent of the insecticide thiamethoxam in the hydrogels. "This is 100-fold less than it is used in a standard ant gel bait and 1,000 times less concentrated than spray insecticides containing thiamethoxam," Tay said.

Future research will address the potential use of the hydrogels on other pest insects as well as how quickly the hydrogels biodegrade.
-end-
The article, published in Pest Management Science, is called "Development of an alginate hydrogel to deliver aqueous bait for pest ant management." The research was funded by the California Department of Pesticide Regulation and the Early Career Chair in Urban Entomology Fund.

The UCR Office of Technology Commercialization has filed a patent application for the inventions above.

A short video that media can use and share in on YouTube: https://www.youtube.com/watch?v=CwDB8uyCCmg

University of California - Riverside

Related Hydrogel Articles:

Active droplets
Using a mixture of oil droplets and hydrogel, medical active agents can be not only precisely dosed, but also continuously administered over periods of up to several days.
First-of-its-kind hydrogel platform enables on-demand production of medicines, chemicals
A team of chemical engineers has developed a new way to produce medicines and chemicals on demand and preserve them using portable ''biofactories'' embedded in water-based gels called hydrogels.
New hydrogels wither while stem cells flourish for tissue repair
Recently, a type of biodegradable hydrogel, dubbed microporous annealed particle (MAP) hydrogel, has gained much attention for its potential to deliver stem cells for body tissue repair.
SUTD develops revolutionary reversible 4D printing with research collaborators
Researchers from SUTD worked with NTU to revolutionise 4D printing by making a 3D fabricated material change its shape and back again repeatedly without electrical components
Bio-inspired hydrogel can rapidly switch to rigid plastic
A new material that stiffens 1,800-fold when exposed to heat could protect motorcyclists and racecar drivers during accidents.
Researchers develop thermo-responsive protein hydrogel
Bio-engineering researchers have created a biocompatible, protein-based hydrogel that could serve as a drug delivery system durable enough to survive in the body for more than two weeks while providing sustained medication release.
FDA phase 1 trial shows hydrogel to repair heart is safe to inject in humans -- a first
Ventrix, a University of California San Diego spin-off company, has successfully conducted a first-in-human, FDA-approved Phase 1 clinical trial of an injectable hydrogel that aims to repair damage and restore cardiac function in heart failure patients who previously suffered a heart attack.
High-tech gel aids delivery of drugs
High tech gel aids in the delivery of drugs.
CRISPR-responsive hydrogel system offers programmable approach to smart biomaterials
Using CRISPR as the 'switcher,' hydrogels infused with DNA can be programmed to translate biological information into changes in the constituent gel material's properties, researchers say, triggering the gels to release compounds or nanoparticles, for example.
New hydrogels show promise in treating bone defects
Bioengineers and dentists from the UCLA School of Dentistry have developed a new hydrogel that is more porous and effective in promoting tissue repair and regeneration.
More Hydrogel News and Hydrogel Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.