Nav: Home

Can a quantum drum vibrate and stand still at the same time?

May 18, 2018

Researchers have studied how a 'drumstick' made of light could make a microscopic 'drum' vibrate and stand still at the same time.

A team of researchers from the UK and Australia have made a key step towards understanding the boundary between the quantum world and our everyday classical world.

Quantum mechanics is truly weird. Objects can behave like both particles and waves, and can be both here and there at the same time, defying our common sense. Such counterintuitive behaviour is typically confined to the microscopic realm and the question "why don't we see such behaviour in everyday objects?" challenges many scientists today.

Now, a team of researchers have developed a new technique to generate this type of quantum behaviour in the motion of a tiny drum just visible to the naked eye. The details of their research are published today in New Journal of Physics.

Project principal investigator, Dr Michael Vanner from the Quantum Measurement Lab at Imperial College London, said: "Such systems offer significant potential for the development of powerful new quantum-enhanced technologies, such as ultra-precise sensors, and new types of transducers.

"Excitingly, this research direction will also enable us to test the fundamental limits of quantum mechanics by observing how quantum superpositions behave at a large scale."

Mechanical vibrations, such as those that create the sound from a drum, are an important part of our everyday experience. Hitting a drum with a drumstick causes it to rapidly move up and down, producing the sound we hear.

In the quantum world, a drum can vibrate and stand still at the same time. However, generating such quantum motion is very challenging. lead author of the project Dr Martin Ringbauer from the University of Queensland node of the Australian Research Council Centre for Engineered Quantum Systems, said: "You need a special kind of drumstick to make such a quantum vibration with our tiny drum."

In recent years, the emerging field of quantum optomechanics has made great progress towards the goal of a quantum drum using laser light as a type of drumstick. However, many challenges remain, so the authors' present study takes an unconventional approach.

Dr Ringbauer continues: "We adapted a trick from optical quantum computing to help us play the quantum drum. We used a measurement with single particles of light--photons--to tailor the properties of the drumstick.

"This provides a promising route to making a mechanical version of Schrodinger's cat, where the drum vibrates and stands still at the same time."

These experiments have made the first observation of mechanical interferences fringes, which is a crucial step forward for the field.

In the experiment, the fringes were at a classical level due to thermal noise, but motivated by this success, the team are now working hard to improve their technique and operate the experiments at temperatures close to absolute zero where quantum mechanics is expected to dominate.

These future experiments may reveal new intricacies of quantum mechanics and may even help light the path to a theory that links the quantum world and the physics of gravity.
-end-


Imperial College London

Related Quantum Mechanics Articles:

Engineers examine chemo-mechanics of heart defect
Elastin and collagen serve as the body's building blocks. Any genetic mutation short-circuiting their function can have a devastating, and often lethal, health impact.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Quantum mechanics are complex enough, for now...
Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Problems in mechanics open the door to the orderly world of chaos
Despite the impression given in most mechanics texts, most non-trivial mechanics problems simply have no analytic solutions.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Quantum satellite device tests technology for global quantum network
Researchers at the National University of Singapore and University of Strathclyde, UK, report first data from a satellite that is testing technology for a global quantum network.
Understanding the mechanics of the urinary bladder
Dr. S. Roccabianca and Dr. T.R. Bush, researchers from Michigan State University compiled an extensive review of the key contributions to understanding the mechanics of the bladder ranging from work conducted in the 1970s through the present time with a focus on material testing and theoretical modeling.
Mechanics of a heartbeat are controlled by molecular strut in heart muscle cells
Using high-resolution microscopy, researchers found that molecular struts called microtubules interact with the heart's contractile machinery to provide mechanical resistance for the beating of the heart, which could provide a better understanding of how microtubules affect the mechanics of the beating heart, and what happens when this goes awry.
Quantum computing closer as RMIT drives towards first quantum data bus
Researchers have trialled a quantum processor capable of routing quantum information from different locations in a critical breakthrough for quantum computing.

Related Quantum Mechanics Reading:

Quantum Mechanics: The Theoretical Minimum
by Leonard Susskind (Author), Art Friedman (Author)

Introduction to Quantum Mechanics
by David J. Griffiths (Author)

Introduction to Quantum Mechanics
by David J. Griffiths (Author), Darrell F. Schroeter (Author)

Introduction to Quantum Mechanics (2nd Edition) Paperback Economy edition by. David J. Griffiths
by David J. Griffiths (Author)

Principles of Quantum Mechanics, 2nd Edition
by R. Shankar (Author)

Quantum Physics: What Everyone Needs to Know®
by Michael G. Raymer (Author)

Quantum Mechanics: Concepts and Applications
by Nouredine Zettili (Author)

Quantum Mechanics: A Modern Development (2Nd Edition)
by Leslie E Ballentine (Author)

Reality Is Not What It Seems: The Journey to Quantum Gravity
by Carlo Rovelli (Author), Simon Carnell (Translator), Erica Segre (Translator)

Quantum Mechanics: An Experimentalist's Approach
by Eugene D. Commins (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...