Nav: Home

Simplifying skin disease diagnosis with topical nanotechnology

May 18, 2018

In a new SLAS Technology auto-commentary, two authors of an article recently published in Nature Biomedical Engineering (Abnormal Scar Identification with Spherical Nucleic Acid Technology) share more insight into their unique method for skin disease diagnosis using NanoFlare nanotechnology. In particular, the authors address point-of-care diagnosis and image acquisition, which are the primary bottlenecks in efficient disease diagnosis.

Authors David Yeo, Ph.D., and Prof. Chenjie Xu, Ph.D., of the School of Chemical and Biomedical Engineering at Nanyang Technological University (Singapore) use NanoFlare to enable biopsy-free disease diagnosis and progression monitoring in response to therapy. It is a minimally-invasive, self-applied alternative that can reduce scarring and infection risks; improve accessibility to disease diagnosis; provide timely feedback of treatment efficacy; and reduce healthcare personnel time and attention, hence the overall healthcare burden.

This vision of simplifying disease diagnosis using topically-applied nanotechnology could change the way skin diseases such as abnormal scars are diagnosed and managed.
-end-
Simplifying Skin Disease Diagnosis with Topical Nanotechnology can be accessed for free for a limited time at http://journals.sagepub.com/doi/full/10.1177/2472630318775314. For more information about SLAS and its journals, visit http://www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY: 2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

SLAS (Society for Laboratory Automation and Screening)

Related Biomedical Engineering Articles:

Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.
Biomedical Engineering hosts national conference on STEM education for underserved students
The University of Akron hosts a national conference aimed at ensuring underserved students have access to opportunities in science, technology, engineering and mathematics (STEM).
Boosting the lifetime and effectiveness of biomedical devices
A research team led by the University of Delaware's David Martin has discovered a new approach to boosting the lifetime and effectiveness of electronic biomedical devices.
Support for Chicago Biomedical Consortium renewed
The Searle Funds at The Chicago Community Trust has renewed its funding commitment to the Chicago Biomedical Consortium, a research and education collaboration of Northwestern University, the University of Illinois at Chicago and University of Chicago that has helped establish the Chicago area as a biomedical sciences leader.
Should biomedical graduate schools ignore the GRE?
A research team at the UNC School of Medicine found that the Graduate Record Exam (GRE), which is required for admission to graduate and doctorate programs across the country, is not the best indicator for predicting a student's success while pursuing a doctorate in the experimental life sciences.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Brown University researchers develop new ligase for biomedical use
The new heat-stable RNA ligase could be useful for a variety of applications including in vitro diagnostics and sequencing.
NIH announces winners of undergraduate biomedical engineering design competition
In a nation-wide competition, six teams of undergraduate engineering students produced prize-winning designs for technological advances to improve human health.
UH biomedical engineer pursues nerve regeneration
Injuries and certain degenerative diseases -- including Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis -- can disrupt the nervous system, posing a challenge for scientists seeking ways to repair the damage.
Maximizing biomedical research through integrated science
In this Policy Forum, Phillip Sharp, Tyler Jacks and Susan Hockfield discuss the need for better integration of engineering, physical, computational, and mathematical sciences with biomedical science, as they publish a report this week outlining key recommendations in this space.

Related Biomedical Engineering Reading:

Biomedical Engineering: Bridging Medicine and Technology (Cambridge Texts in Biomedical Engineering)
by W. Mark Saltzman (Author)

The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving... View Details


Not Impossible: The Art and Joy of Doing What Couldn't Be Done
by Mick Ebeling (Author)

What if you discovered by accident that you could change the world? Mick Ebeling—a film producer by trade, optimist by nature—set out to perform a simple act of kindness that quickly turned into a lifelong mission. In the process he discovered that he could, indeed, change the world—and this fascinating new book shows how you can, too.

On the cutting edge of the new “Maker Movement”—an outgrowth of the “hackers” of a decade ago—Mick Ebeling has found ways to create new, simple, do-it-yourself technologies to help people surmount seemingly impossible odds. With a bunch... View Details


Biomedical Engineering and Human Body Systems (Engineering in Action)
by Rebecca Sjonger (Author)

"Biomedical engineering is the fastest growing engineering field. From designing life-saving medical devices to high-performance athletic gear, these engineers improve people's lives every day. This book explores the creative ways biomedical engineers help diagnose, treat, and prevent problems found in human body systems. Real-life examples make learning about the engineering design process interesting for readers. Practical, hands-on activities help readers to understand scientific and engineering principles."-- View Details


The Body Builders: Inside the Science of the Engineered Human
by Adam Piore (Author)

Fareed Zakaria GPS Book of the Week

Weaving together vivid storytelling and groundbreaking science, The Body Builders explores the current revolution in human augmentation, which is helping us to triumph over the limitations and constraints we have long accepted as an inevitable part of being human

For millennia, humans have tried—and often failed—to master nature and transcend our limits. But this has started to change. The new scientific frontier is the human body: the greatest engineers of our generation have turned their sights... View Details


Introduction to Biomedical Engineering, Third Edition
by John Enderle Ph.D. (Author), Joseph Bronzino (Author)

Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume.

Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical... View Details


Introduction to Biomedical Engineering, Second Edition
by John D. Enderle (Author), Joseph D. Bronzino (Author), Susan M. Blanchard (Author)

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field.

Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical... View Details


Biomedical Engineering: Bridging Medicine and Technology (Cambridge Texts in Biomedical Engineering)
by W. Mark Saltzman (Author)

This is an ideal text for an introduction to biomedical engineering. The book presents the basic science knowledge used by biomedical engineers at a level accessible to all students and illustrates the first steps in applying this knowledge to solve problems in human medicine. Biomedical engineering now encompasses a range of fields of specialization including bioinstrumentation, bioimaging, biomechanics, biomaterials, and biomolecular engineering. This introduction to bioengineering assembles foundational resources from molecular and cellular biology and physiology and relates them to... View Details


Introduction to Biomedical Engineering Technology, Second Edition
by Laurence J. Street (Author)

Medical devices are often very complex, but while there are differences in design from one manufacturer to another, the principles of operation and, more importantly, the physiological and anatomical characteristics on which they operate are universal. Introduction to Biomedical Engineering Technology, Second Edition explains the uses and applications of medical technology and the principles of medical equipment management to familiarize readers with their prospective work environment.

Written by an experienced biomedical engineering technologist, the book describes... View Details


Biomedical Engineering Entrepreneurship
by Jen-Shih Lee (Author)

This book is written for undergraduate and graduate students in biomedical engineering wanting to learn how to pursue a career in building up their entrepreneur ventures. Practicing engineers wanting to apply their innovations for healthcare will also find this book useful

The 21st century is the Biotech Century where many nations are investing heavily in biotechnology. As a result, tremendous business opportunities exist for biomedical engineering graduates who are interested in becoming successful entrepreneurs. However, many challenges await these entrepreneurs intending to invent safe... View Details


The Biomedical Engineering Handbook, Fourth Edition: Four Volume Set
by Joseph D. Bronzino (Author), Donald R. Peterson (Author)

The definitive "bible" for the field of biomedical engineering, this collection of volumes is a major reference for all practicing biomedical engineers and students. Now in its fourth edition, this work presents a substantial revision, with all sections updated to offer the latest research findings. New sections address drugs and devices, personalized medicine, and stem cell engineering. Also included is a historical overview as well as a special section on medical ethics. This set provides complete coverage of biomedical engineering fundamentals, medical devices and systems, computer... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Inspire To Action
What motivates us to take up a cause, follow a leader, or create change? This hour, TED speakers explore stories of inspirational leadership, and what makes some movements more successful than others. Guests include high school history teacher Diane Wolk-Rogers, writer and behavioral researcher Simon Sinek, 2016 Icelandic presidential candidate Halla Tómasdóttir, professor of leadership Jochen Menges, and writer and activist Naomi Klein.
Now Playing: Science for the People

#474 Appearance Matters
This week we talk about appearance, bodies, and body image. Why does what we look like affect our headspace so much? And how do we even begin to research a topic as personal and subjective as body image? To try and find out, we speak with some of the researchers at the Centre for Appearance Research (CAR) at the University of the West of England in Bristol. Psychology Professor Phillippa Diedrichs walks us through body image research, what we know so far, and how we know what we know. Professor of Appearance and Health Psychology Diana Harcourt talks about visible...