Cardiomyopathy mutation reduces heart's ability to vary pumping force, study reveals

May 18, 2018

Researchers from Washington State University have discovered how a genetic mutation linked to hypertrophic cardiomyopathy (HCM) disrupts the heart's normal function. The study, which will be published May 18 in the Journal of General Physiology, reveals that the mutation prevents the heart from increasing the amount of force it produces when it needs to pump additional blood around the body.

According to the American Heart Association, HCM affects up to 500,000 people in the United States and is usually caused by inherited genetic mutations that result in the heart muscle becoming abnormally thick and unable to pump enough blood around the body. In 2009, researchers in Spain identified a mutation in the heart muscle protein troponin T that appeared to pose a particularly high risk of sudden death in children and adults, despite it causing only a mild thickening of the heart muscle wall. The mutation, known as F87L, alters a single amino acid in the central region of troponin T but how this affected cardiac function was unclear.

Murali Chandra, a professor at Washington State University in Pullman, WA, and graduate student Sherif Reda introduced an equivalent mutation in the cardiac troponin T gene of guinea pigs and analyzed how this affected the ability of guinea pig cardiac muscle fibers to contract and produce force.

Troponin T is part of the troponin complex that allows muscle fibers to contract in response to calcium released upon electrical stimulation. An important feature of cardiac muscle filaments is that they become more sensitive to calcium--and therefore contract more strongly--as they are stretched to longer lengths. Thus, when the heart fills up with more blood, as occurs during increased physical activity, it stretches the muscle walls and the heart contracts with increased force to pump out extra blood. Troponin is thought to play a central role in this phenomenon, which is known as the Frank-Starling mechanism.

Reda and Chandra found that the F87L mutation in troponin T abolishes this length-dependent increase in calcium sensitivity. Short, unstretched muscle fibers expressing mutant troponin T showed the same response to calcium as longer, stretched fibers.

"Our data demonstrate that the length-mediated increase in force is significantly decreased by this HCM-associated mutation, suggesting that the mutation may blunt muscle length-mediated increase in force production in the heart," says Chandra. "Attenuation of the Frank-Starling mechanism may have severe consequences for the individual because it limits the heart's ability to increase output when it needs to pump additional blood around the body."
-end-
Reda and Chandra, 2018. J. Gen. Physiol.http://jgp.rupress.org/cgi/doi/10.1085/jgp.201711974?PR

About the Journal of General PhysiologyThe Journal of General Physiology (JGP)features peer-reviewed research in biological, chemical, or physical mechanisms of broad physiological significance, with an emphasis on physiological problems at the cellular and molecular level. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JGPprovides free online access to many article types from the date of publication and to all archival content. Established in 1918, JGPis published by Rockefeller University Press. For more information, visit http://jgp.rupress.org/>jgp.org.

Visit our http://rupress.org/newsroom>Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JGP on Twitter at https://twitter.com/jgenphysiol>@JGenPhysiol and https://twitter.com/rockupress>@RockUPress.

Rockefeller University Press

Related Calcium Articles from Brightsurf:

A new strategy for the greener use of calcium carbide
Computational chemists from St Petersburg University and the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences have developed a new strategy for using calcium acetylide in the synthesis of organic compounds.

New link between calcium and cardiolipin in heart defects
To function properly, the heart needs energy from cells' powerhouses, the mitochondria.

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.

Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.

Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.

New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.

Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.

A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.

The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.

Read More: Calcium News and Calcium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.