Nav: Home

Antibody neutralizes SARS and COVID-19 coronaviruses

May 18, 2020

An antibody first identified in a blood sample from a patient who recovered from Severe Acute Respiratory Syndrome in 2003 inhibits related coronaviruses, including the cause of COVID-19.

The antibody, called S309, is now on a fast-track development and testing path at Vir Biotechnology in the next step toward possible clinical trials.

Laboratory research findings on the S309 antibody are reported in the May 18 edition of Nature. The title of the paper is: "Cross-neutralization of SARS-CoV and SARS-CoV2 by a human monoclonal antibody".

The senior authors on the paper are David Veesler, assistant professor of biochemistry at the University of Washington School of Medicine, and Davide Corti of Humabs Biomed SA, a subsidiary of Vir.

The lead authors are Dora Pinto and Martina Beltramello of Humabs, as well as Young-Jun Park and Lexi Walls, research scientists in the Veesler lab, which for several years has been studying the structure and function of the infection mechanisms on a variety of coronaviruses.

"We still need to show that this antibody is protective in living systems, which has not yet been done," Veesler said.

"Right now there are no approved tools or licensed therapeutics proven to fight against the coronavirus that causes COVID-19," he added. If the antibody is shown to work against the novel coronavirus in people, it could become part of the pandemic armamentarium.

Veesler said that his lab is not the only one seeking neutralizing antibodies for COVID 19 treatment. What makes this antibody different is that its search did not take place in people who had COVID-19, but in someone who had been infected 17 years ago during a SARS epidemic.

"This is what allowed us to move so fast compared to other groups," Veesler said.

The scientists identified several monoclonal antibodies of interest from memory B cells of the SARS survivor. Memory B cells form following an infectious illness. Their lineage can last, sometimes for life. They usually remember a pathogen, or one similar to it, that the body has ousted in the past, and launch an antibody defense against a re-infection.

Several of the antibodies from the SARS survivor's memory B cells are directed at a protein structure on coronaviruses. This structure is critical to the coronaviruses' ability to recognize a receptor on a cell, fuse to it, and inject their genetic material into the cell. This infectivity machinery is located in the spikes that crown the coronavirus.

The S309 antibody is particularly potent at targeting and disabling the spike protein that promotes the coronavirus entry into cells. It was able to neutralize SARS CoV-2 by engaging with a section of the spike protein nearby the attachment site to the host cell.

Through their cryo-electronmicroscopy studies and binding assays, the researchers learned that the S309 antibody recognizes a binding site on the coronavirus that is conserved across many sarbocoviruses, not just the SARS and COVID-19 viruses. That is probably why this antibody, instead of being single-minded, is able to act against related coronaviruses.

Combining the S309 antibody with other, though weaker, antibodies identified in the recovered SARS patient enhanced the neutralization of the COVID-19 coronavirus.

This multiple antibody cocktail approach might help limit the coronavirus' ability to form mutants capable of escaping a single-ingredient antibody treatment, according to the researchers.

The scientists noted that they hope these initial results pave the way for using the S309 antibody, alone or in a mixture, as a preventive measure for people at high-risk of exposure to the COVID-19 coronavirus or as post-exposure therapy to limit or treat severe illness.
-end-
Other research institutions participating in this research include Institut Pasteur in France, the Università della Svizzera Italiana in Switzerland, and Washington University in St. Louis, Missouri.

This study was supported by the National Institute of General Medical Sciences, National Institute of Allergy and Infectious Diseases, Pew Biomedical Scholars Award, Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund, University of Washington Arnold and Mabel Beckman cryoEM Center, the Pasteur Institute, and the beamline at the Advanced Light Source at Lawrence Berkley National Laboratory. The researchers obtained viral genomic sequences from GISAID's EpiFlu Database, hosted by the German government.

University of Washington Health Sciences/UW Medicine

Related Memory Articles:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.
Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.