Nav: Home

Theory of detonation-driven hypervelocity shock tunnels and its demonstration

May 18, 2020

Many 21st century challenges exist in science and technology, and one of these is the hypersonic vehicle from the dream for human beings to fly faster, higher and further. For developing such the hypersonic vehicle, one of the crucial problems appears to be advanced ground test facilities. After more than sixty year's research work, hypersonic ground test facilities suitable for verification of hypersonic techniques and exploration of the aero-thermochemistry of hypersonic flows still rely on shock tunnels that have some limitations to meet the ever-increasing demand. For reliable ground tests, four requirements must be considered carefully for hypersonic wind tunnel development: (1) The test gas, instead of any substitute, must be the pure air to accurately simulate chemical reaction mechanisms; (2) The stagnation temperature and total pressure must be achieved to excite correct chemical reactions; (3) The scale of test models must be large enough to ensure that chemical reactions occur at the correct reaction rate on the right location of the test models because chemical reactions are not scalable; (4) Sufficient long test time is necessary for aerodynamic forces and supersonic combustion tests. The fourth requirement is important for the test flow to reach stable combustion and improve the experimental data accuracy of aerodynamic forces and moments. Meeting these four requirements at the same time results in the flight condition duplication in ground test facilities, which has been a challenge in developing hypersonic test facilities for decades.

The theory of detonation-driven shock tunnels for developing hypervelocity test facilities is described, covering three important aspects. The first aspect is on the special feature of shock tunnels. The stagnation temperature and the total pressure can be simulated selectively to generate hypersonic flows with a required velocity but at different altitudes if the shock tunnel driver is powerful enough. Two methods can be used to improve shock tunnels' driving ability by increasing the sound speed of the driver gases. One is choosing light-gases as driver gases and other is heating the driver gases to a high temperature level. The detonation driver has a special advantage in generating high temperature driver gases. The second aspect is on the detonation driver concept that is demonstrated to meet the demand from large-scale high-enthalpy testing. This means that the driver is capable of generating test flows with both the high total temperature and the high power for generating large scale test flow fields. Two kinds of the detonation drivers are developed and applied successfully. One is the backward detonation driver for long test duration. The JF-12 hypersonic flight duplicated shock tunnel (Hyper-dragon I) is built up based on this operation mode and becomes the largest hypersonic shock tunnel with a 2.5 m diameter nozzle. Its performance covers Mach numbers from 5-9 and flight altitudes from 25-50 km. The other is the forward detonation cavity (FDC) driver for gaining high flow enthalpy, and this operation mode is tested in the JF-10 detonation-driven high-enthalpy shock tunnel in the Institute of Mechanics, CAS. The test flow of a total temperature up to 7000 K is achieved with a uniform reservoir pressure maintaining for as long as 6 ms. Figure shows the schematic diagram of the FDC driver and its experimental performance data. The last aspect deals with the interface-matching problem. The interface separating test/driver gases can induce the incident shock reflection, therefor, it is a key issue for improving test flow quality and keeping test time as long as possible. The interface-matching condition is proposed by adjusting the initial detonable gas mixture to make the acoustic resistance of its detonated products be the same with the test gas behind the incident shock wave. Shock tunnel experiments showed that two detonation drivers can be operated under the interface-matching condition with the incident Mach number as high as 9. By operating under such the condition, the 100 ms test duration is achieved by the Hyper-dragon I.

Theory of the detonation-driven hypervelocity shock tunnel is described systemically with experimental demonstration. With the theory, it is possible to develop large-scale hypersonic test facilities for thermal-aerodynamic research on hypersonic flows that are chemically reacting.
-end-
See the article: On Theory and Methods for Advanced Detonation-driven Hypervelocity Shock Tunnels https://doi.org/10.1093/nsr/nwaa050

Science China Press

Related Chemical Reactions Articles:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.
Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.
Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.
New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.
Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.
Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.
First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.
Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.
Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.
Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
More Chemical Reactions News and Chemical Reactions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.