Nav: Home

A new brick in the wall: Bacterial cell wall intermediate found

May 18, 2020

An accumulation of an unexpected intermediate of the peptidoglycan recycling pathway that is able to modulate the synthesis and structure of the cell wall, has been found by researchers at Umeå University, Sweden.

Most bacteria are shielded by a protective cell wall consisting of a strong yet elastic polymer called peptidoglycan. Peptidoglycan is essential for bacteria and so, it has always been in the spotlight when it comes to the development of antibiotics. Identifying new weaknesses of the bacterial cell wall as antibiotic targets is of highest international priority to fight pathogenic bacteria.

As bacteria grow, the peptidoglycan needs to grow too. In order to insert new subunits, certain enzymes must open up the peptidoglycan mesh and, as a consequence, fragments known as muropeptides are released to the extracellular environment. During an infection, these muropeptides can be detected by the host as a "danger" signals, which induce a high immune response. Therefore, in order to survive inside the host many bacterial species have devised mechanisms to re-internalize these peptidoglycan fragments, a process known as peptidoglycan recycling. However, despite it is unquestionable its value in keeping bacteria away from the host radar, peptidoglycan recycling does not exclusively happen during infection and because of this, the true biological meaning of this process has remained mysterious for microbiologists.

Felipe Cava's research group at the Molecular Infection Medicine Sweden (MIMS) studied the genetics and physiology behind the peptidoglycan-recycling pathway using as experimental model the causative agent of cholera, Vibrio cholerae. The study was performed in collaboration with Tobias Dörr (Cornell University, USA) and Matthew K. Waldor (Harvard Medical School, USA) and the results have been published in the journal Cell Reports on the 28th of April.

The scientists have revealed an unnoticed link between peptidoglycan recycling and synthesis to promote optimal cell wall assembly and composition.

The peptidoglycan recycling pathway is widely conserved amongst bacteria but this process seems to be not essential and its biological importance for the bacteria were not well-understood.

"Our lab found that the accumulation of an unexpected intermediate of the peptidoglycan recycling pathway is able to modulate the synthesis and structure of the cell wall; thus, our work provides new insights into the intersection between the peptidoglycan recycling and the de novo biosynthetic pathways," explained Felipe Cava, head of the study.

Peptidoglycan recycling is accomplished by a sequence of enzymatic steps where reinternalized muropeptides are broken down into smaller pieces. A critical step in this process is carried out by L,D-carboxypeptidases, specific enzymes that remove the terminal D-amino acid of the muropeptides. The Cava lab has found that these enzymes represent the "control checkpoint" between peptidoglycan recycling and peptidoglycan synthesis.

"A few years ago our lab, together with other colleagues, discovered that under stress conditions V. cholerae is able to produce a set of unusual amino acids (named "non-canonical D-amino acids") such as, for instance, D-Methionine. In this study we have found that muropeptides modified with these non-canonical D-amino acids are poorly recycled by LD-carboxypeptidases thereby inducing the accumulation of intermediates which play an unforeseen role in regulating the synthesis and architecture of the cell wall," explains Sara Hernández, postdoctoral researcher who conducted the study.

Besides the role in regulating cell wall synthesis and structure, extracellular peptidoglycan fragments are known to be important signals in innate immunity, organ development and behavior.

"Although most of the peptidoglycan fragments are recovered for recycling, under certain conditions bacteria can release them to the environment. It will be important to consider whether peptidoglycan fragments modified with non-canonical D-amino acids convey distinct information in inter-kingdom signaling compared to fragments with canonical chemistries," explained Felipe Cava, head of the study.

"Moreover, in microbial ecology, our findings suggest that the release the modified muropeptides into the environment could mediate interspecies peptidoglycan cross-regulation. Whether this regulation can promote cooperative or competitive behaviors is something that will need to be investigated in the future," concludes Felipe Cava.
-end-


Umea University

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.