The malaria parasite P. vivax can remain in the spleen upon expression of certain proteins

May 18, 2020

The malaria parasite Plasmodium vivax can adhere to human spleen cells through the expression of so-called variant proteins. These are the conclusions of a study led by the Barcelona Institute for Global health (ISGlobal), an institution supported by "la Caixa" and the Germans Trias i Pujol Institute (IGTP). The results, published in Proceedings of the National Academy of Sciences (PNAS), suggest that this could represent an additional challenge to eliminating the disease.

Malaria by P. vivax is the most widespread form of the disease outside the African continent and is responsible for 7.5 million cases every year. Even if it is considered les lethal than P. falciparum malaria, it can cause severe symptoms and even death.

One of the enigmas of P. vivax infection is its capacity to cause severe symptoms despite low levels of parasites circulating in the blood. Recent studies suggest this could be due to the parasite 'hiding' in the spleen, challenging the dogma that the organ's sole function is to eliminate red blood cells infected by the parasite.

In this study, the team led by Carmen Fernandez-Becerra and Hernando A del Portillo investigated the spleen's role in P. vivax infection. To do so, they infected monkeys that lacked - or not - a spleen, and compared the expression of over 5,000 genes in parasites recovered from these animals. They identified 67 genes that were only expressed in the presence of a spleen. Most of these genes belonged to variant protein families. The authors then showed that one of the genes belonging to the VIR family promotes parasite adherence to human spleen cells, but not to lung cells. The authors also demonstrated that these proteins are recognised by our immune system. They found antibodies against these proteins in serum samples from 383 children from Papua New Guinea diagnosed with the disease. Moreover, antibodies against one of these proteins (HYP1) were associated with protection against clinical episodes during the follow-up period.

"These results suggest that the spleen plays a double role in malaria pathology," explains Hernando A del Portillo, ICREA researcher at ISGlobal. "On one hand, it destroys infected red blood cells; on the other hand, it represents a niche where infected red blood cells can adhere, thereby explaining the low number of circulating parasites in malaria vivax. These findings can also help us find new vaccine targets and exposure markers," he adds.

"This also means that, together with the bone marrow, the spleen is another organ where the parasite can hide, thereby challenging the elimination of these cryptic infections," says Carmen Fernández-Becerra, first author of the study.
-end-


Barcelona Institute for Global Health (ISGlobal)

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.