Aluminum may affect lead levels in drinking water

May 18, 2020

It is not uncommon to find aluminum in municipal water systems. It's part of a treatment chemical used in some water treatment processes. Recently, however, it has been discovered in lead scale, deposits that form on lead water pipes.

The aluminum presence in pipes is both unsurprising and, in the quantities researchers saw in water pipes, not a health concern, according to Daniel Giammar, the Walter E. Browne Professor of Environmental Engineering in the McKelvey School of Engineering at Washington University in St. Louis. But no one had looked at how it might affect the larger municipal system.

In particular, Giammar wanted to find out, "What is that aluminum doing to the behavior of the lead in the scale?" As long as the lead is bound to the scale, it doesn't enter the water system.

Giammar and a team ran several experiments and found that, in a lab setting, aluminum does have a small but important effect on lead's solubility under certain conditions. Their results were published in late April in Environmental Science & Technology. The paper was selected as "ACS Editor's Choice" by the American Chemical Society, which makes it available to the public for free.

The experiments were carried out in large part by visiting PhD student Guiwei Li, who was able to complete the work during his brief stay at Washington University before returning to the Chinese Academy of Sciences.

In simplified models, the researchers took a look at how phosphate, aluminum and a combination of the two, affected a strip of lead in a jar of water with a composition close to that of water found in many water systems. The aim: to better understand lead's solubility, or the amount that would dissolve and make its way into the water when impacted by those chemicals.

In the jar in which only aluminum was added, there was no effect on the solubility of the lead strip; lead had dissolved into the water at a concentration of about 100 micrograms per liter.

In the jar in which only phosphate was added, the concentration of lead in the water decreased from about 100 micrograms per liter to less than one.

In the jar in which both aluminum and phosphate were added, the concentration of lead in the water decreased from about 100 micrograms per liter to about 10 micrograms per liter.

Ten micrograms of lead per liter of water is still below drinking water standards, Giammar said, but it's still more lead in the water than was seen in the jar without aluminum. "This tells us what our next experiment should be," he said. His lab will do these experiments with real lead pipes, as they have done in the past.

"This showed us things that were surprising," he said. "Some people would have thought that aluminum wasn't doing anything because it's inert. But then in our work, we saw that it actually affects lead solubility."
-end-


Washington University in St. Louis

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.