Clusters, Computers And The Human Brain

May 18, 1998

How does our brain cope with the enormous flux of information that bombards our senses? One important neural strategy is the ability to "cluster," or categorize, data and thus make sense of the world around us.

Prof. Eytan Domany, head of the Weizmann Institute's Physics of Complex Systems Department, has developed a new method, or algorithm, for performing "clustering" on computer. A patent application for the algorithm, whose physical aspects are described in the April issue of Physical Review E, has been filed through Yeda Research and Development Co., the Institute's technology transfer arm. The approach has great potential for use in data-heavy scientific and industrial applications.

For example, the algorithm may be used to analyze the vast stream of information collected by satellites orbiting the earth. It may also be of great help in "data mining," the process by which specific information, such as details on a particular product, are culled from the world's huge and constantly growing commercial data banks.

One of the most interesting aspects of the new algorithm is the fact that it mimics unassisted learning. Unlike most automated "sorting" processes, in which a computer must be informed of the relevant categories in advance, Domany's algorithm is analogous to human intuition: it doesn't need to be told how the data is structured or how it should be broken down into groups. When confronted with each new clustering task, the algorithm analyzes the data, computes the degree of similarity between its components and picks its own criteria for breaking the data into clusters.

This is similar to the way in which a young child categorizes unfamiliar objects. For example, a child who has never seen a kangaroo or a bicycle, and is exposed to hundreds of different pictures of each, will eventually figure out that the pictures represent two types of objects -- in other words, that the pictures form two "clusters," one of kangaroos and the other of bicycles. As in Domany's algorithm, this process takes place independently of any instruction about the nature of the categories involved. Adults, too, intuitively group together things that are alike, even when not explicitly taught to do this.

The algorithm has already proved itself in solving a variety of clustering problems. In a recent study conducted in collaboration with Yoram Gdalyahu and Dr. Daphna Weinshall of the Hebrew University of Jerusalem, it successfully sorted out 90 images of six different toy objects: three animals, two cars and a boy. Analyzing the lines making up the images, the algorithm correctly determined that the models fall into three different groups. It then further separated the three different animals and the two different cars.

In another task, the algorithm was asked to analyze the sounds of the alphabet as pronounced by 300 people, with the sound of every person's voice represented as a combination of more than 600 acoustic parameters. Without being given any instructions other than the command to look for clusters, the algorithm correctly organized this huge mass of data into clusters corresponding to letters of the English alphabet.

Domany got the idea for his algorithm from a well-known physical phenomenon that serves as a basis of magnetic recording: when a granular magnet, such as a magnetic tape, is warm, its grains form a disorganized mess. But when the magnet is cooled down, the grains progressively organize themselves into well-ordered clusters. Using statistical mechanics of granular magnets, Domany was able to create an algorithm that can look for clusters in any type of data.

Currently, Domany's algorithm is being applied to analyzing the complex neural activity of the brain itself. The goal is to develop an automated process for sorting out brain images produced in response to different stimuli.

Domany's research team included Dr. Marcelo Blatt, Dr. Shai Wiseman and Gaddy Getz. Funding was provided in part by the German-Israeli Foundation for Scientific Research and Development (GIF).

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world's foremost centers of scientific research and graduate study. Its 2,400 scientists, students, technicians, and engineers pursue basic research in the quest for knowledge and the enhancement of the human condition. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities.

Weizmann Institute news releases are posted on the World Wide Web at http://www.weizmann.ac.il and also at http://www.eurekalert.org.
-end-


American Committee for the Weizmann Institute of Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.