First Artificial Muscle Arrays From Carbon Nanotubes

May 18, 1999

New developed sheets of single-walled nanotubes were shown by scientists from the Max Planck Institute for Solid State Research in Stuttgart/Germany, from the USA, Australia and Italy, to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics (Science 21 May 1999). The dominating material in the second half of the 20th century is silicon. Silicon is the most investigated material, and because of our thorough knowledge, silicon is not only the basis of electronics, but also of micromechanics. Carbon has been mainly studied in the context of organic chemistry. But in the last few years the various modifications of pure carbon have attracted the attention of materials scientists. In the form of diamond, carbon is the hardest material known, and diamond also has the highest thermal conductivity. Graphite, on the other hand, is a good electrical conductor. Fullerenes ("Bucky Balls") and nanotubes ("Bucky Tubes") are new versions of graphitic carbon.

Carbon nanotubes are very thin and long tubes. Their diameter is only one or a few nanometers, which means that they are not thicker than typical molecules, and their length can be several micrometers and even millimeters. In electronics, these nanotubes are discussed as quantum wires and quantum dots. They can be used as components of nanostructured field effect transistors and single electron transistors. Their mechanical strength enables applications in nanocomposite materials and, because of the large surface area per weight, nanotubes are good candidates for all sorts of gas adsorption, including hydrogen storage for sustainable energy supplies. From X-ray investigations of graphite we know that the honeycomb lattice expands if the graphitic sheets are electrically charged. Quantumchemical calculations predict that this is also true for carbon nanotubes: The tubes will increase their length if we change the number of electrons sitting on a tube. This effect can be used for electromechanical actuators. Actuators are the moving parts in robotics ("artificial muscles"). The relatively large length change and the high elastic modulus lead to very large figures of merit for carbon nanotube actuators. At the moment, mechanical experiments with individual nanotubes are still difficult, but the effect can easily be demonstrated with "Bucky Paper". Bucky paper is a free standing film of bundles of nanotubes. The actuator effect of carbon nanotubes has been demonstrated by a multinational cooperation, funded by DARPA and lead by Ray Baughman, involving teams at AlliedSignal Inc. in Morristown, USA, at the University of Wollongong in Australia, the University of Pisa in Italy, the University of Florida in Gainesville, Fl, USA, the Georgetown University in Washington DC, and the Max Planck Institute for Solid State Research in Stuttgart, Germany. For this purpose, a strip of bucky paper has been dipped in salt water and electrochemically charged by changing the potential to +/- 1V versus a standard electrode. The length expansion has been made visible by sticking the bucky paper on a piece of inert material (e. g. scotch tape). If the bucky paper expands, the bi-strip bends and the motion can easily be seen by the naked eye.

Therefore, the new actuators open a vast field of potential applications, both by using bucky paper as a macroscopic material, and by using ropes or even individual carbon nanotubes for micro and nano actuator devices.
-end-


Max-Planck-Gesellschaft

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.